Physics Derivation Graph navigation Sign in

list all steps

Derivation Inference Rule Input latex Feeds latex Output latex step validity dimension check unit check notes
Euler equation proof make expr power
  1. 4923339482; locally 3784785:
    \(i x = \log(y)\)
    \(pdg_{1464} pdg_{4621} = \frac{\log{\left(pdg_{1452} \right)}}{\log{\left(10 \right)}}\)
  1. 0006656532:
    \(e\)
    \(pdg_{2718}\)
  1. 9482923849; locally 9587572:
    \(\exp(i x) = y\)
    \(e^{pdg_{1464} pdg_{4621}} = pdg_{1452}\)
LHS diff is -pdg2718**(pdg1464*pdg4621) + exp(pdg1464*pdg4621) RHS diff is pdg1452 - pdg2718**(log(pdg1452)/log(10)) 4923339482:
9482923849:
4923339482:
9482923849:
Euler equation proof indefinite integrate RHS over
  1. 9482113948; locally 8883737:
    \(\frac{dy}{y} = i dx\)
    \(pdg_{4621}\)
  1. 0004264724:
    \(y\)
    \(pdg_{1452}\)
  1. 9482943948; locally 9984877:
    \(\log(y) = i dx\)
    \(\frac{\log{\left(pdg_{1452} \right)}}{\log{\left(10 \right)}} = pdg_{4621} pdg_{9199}\)
Nothing to split 9482113948:
9482943948:
9482113948:
9482943948:
Euler equation proof multiply both sides by
  1. 9848294829; locally 9038289:
    \(\frac{d}{dx} y = y i\)
    \(\frac{d}{d pdg_{1464}} pdg_{1452} = pdg_{1452} pdg_{4621}\)
  1. 0003954314:
    \(dx\)
    \(pdg_{9199}\)
  1. 9848292229; locally 1111289:
    \(dy = y i dx\)
    \(pdg_{5842} = pdg_{1452} pdg_{4621} pdg_{9199}\)
LHS diff is -pdg5842 RHS diff is 0 9848294829:
9848292229:
9848294829:
9848292229:
Euler equation proof factor out X from RHS
  1. 9429829482; locally 1838300:
    \(\frac{d}{dx} y = -\sin(x) + i\cos(x)\)
    \(\frac{d}{d pdg_{1464}} pdg_{1452} = pdg_{4621} \cos{\left(pdg_{1464} \right)} - \sin{\left(pdg_{1464} \right)}\)
  1. 0007563791:
    \(i\)
    \(pdg_{4621}\)
  1. 9482984922; locally 2948271:
    \(\frac{d}{dx} y = (i\sin(x) + \cos(x)) i\)
    \(\frac{d}{d pdg_{1464}} pdg_{1452} = pdg_{4621} \left(pdg_{4621} \sin{\left(pdg_{1464} \right)} + \cos{\left(pdg_{1464} \right)}\right)\)
LHS diff is 0 RHS diff is (-pdg4621**2 - 1)*sin(pdg1464) 9429829482:
9482984922:
9429829482:
9482984922:
Euler equation proof indefinite integrate RHS over
  1. 9482943948; locally 9984877:
    \(\log(y) = i dx\)
    \(\frac{\log{\left(pdg_{1452} \right)}}{\log{\left(10 \right)}} = pdg_{4621} pdg_{9199}\)
  1. 0006563727:
    \(x\)
    \(pdg_{1464}\)
  1. 4928239482; locally 3747585:
    \(\log(y) = i x\)
    \(\frac{\log{\left(pdg_{1452} \right)}}{\log{\left(10 \right)}} = pdg_{1464} pdg_{4621}\)
no check performed 9482943948:
4928239482:
9482943948:
4928239482:
Euler equation proof differentiate with respect to
  1. 9492920340; locally 1029383:
    \(y = \cos(x)+i \sin(x)\)
    \(pdg_{1452} = pdg_{4621} \sin{\left(pdg_{1464} \right)} + \cos{\left(pdg_{1464} \right)}\)
  1. 0007636749:
    \(x\)
    \(pdg_{1464}\)
  1. 9429829482; locally 1838300:
    \(\frac{d}{dx} y = -\sin(x) + i\cos(x)\)
    \(\frac{d}{d pdg_{1464}} pdg_{1452} = pdg_{4621} \cos{\left(pdg_{1464} \right)} - \sin{\left(pdg_{1464} \right)}\)
no check performed 9492920340:
9429829482:
9492920340:
9429829482:
Euler equation proof divide both sides by
  1. 9848292229; locally 1111289:
    \(dy = y i dx\)
    \(pdg_{5842} = pdg_{1452} pdg_{4621} pdg_{9199}\)
  1. 0009877781:
    \(y\)
    \(pdg_{1452}\)
  1. 9482113948; locally 8883737:
    \(\frac{dy}{y} = i dx\)
    \(pdg_{4621}\)
Nothing to split 9848292229:
9482113948:
9848292229:
9482113948:
Euler equation proof declare initial expr
  1. 9492920340; locally 1029383:
    \(y = \cos(x)+i \sin(x)\)
    \(pdg_{1452} = pdg_{4621} \sin{\left(pdg_{1464} \right)} + \cos{\left(pdg_{1464} \right)}\)
no validation is available for declarations 9492920340:
9492920340:
Euler equation proof substitute RHS of expr 1 into expr 2
  1. 9492920340; locally 1029383:
    \(y = \cos(x)+i \sin(x)\)
    \(pdg_{1452} = pdg_{4621} \sin{\left(pdg_{1464} \right)} + \cos{\left(pdg_{1464} \right)}\)
  2. 9482984922; locally 2948271:
    \(\frac{d}{dx} y = (i\sin(x) + \cos(x)) i\)
    \(\frac{d}{d pdg_{1464}} pdg_{1452} = pdg_{4621} \left(pdg_{4621} \sin{\left(pdg_{1464} \right)} + \cos{\left(pdg_{1464} \right)}\right)\)
  1. 9848294829; locally 9038289:
    \(\frac{d}{dx} y = y i\)
    \(\frac{d}{d pdg_{1464}} pdg_{1452} = pdg_{1452} pdg_{4621}\)
valid 9492920340:
9482984922:
9848294829:
9492920340:
9482984922:
9848294829:
Euler equation proof declare final expr
  1. 4938429483; locally 8888888:
    \(\exp(i x) = \cos(x)+i \sin(x)\)
    \(e^{pdg_{1464} pdg_{4621}} = pdg_{4621} \sin{\left(pdg_{1464} \right)} + \cos{\left(pdg_{1464} \right)}\)
no validation is available for declarations 4938429483:
4938429483:
Euler equation proof swap LHS with RHS
  1. 4928239482; locally 3747585:
    \(\log(y) = i x\)
    \(\frac{\log{\left(pdg_{1452} \right)}}{\log{\left(10 \right)}} = pdg_{1464} pdg_{4621}\)
  1. 4923339482; locally 3784785:
    \(i x = \log(y)\)
    \(pdg_{1464} pdg_{4621} = \frac{\log{\left(pdg_{1452} \right)}}{\log{\left(10 \right)}}\)
valid 4928239482:
4923339482:
4928239482:
4923339482:
Euler equation proof substitute RHS of expr 1 into expr 2
  1. 9482923849; locally 9587572:
    \(\exp(i x) = y\)
    \(e^{pdg_{1464} pdg_{4621}} = pdg_{1452}\)
  2. 9492920340; locally 1029383:
    \(y = \cos(x)+i \sin(x)\)
    \(pdg_{1452} = pdg_{4621} \sin{\left(pdg_{1464} \right)} + \cos{\left(pdg_{1464} \right)}\)
  1. 4938429483; locally 8888888:
    \(\exp(i x) = \cos(x)+i \sin(x)\)
    \(e^{pdg_{1464} pdg_{4621}} = pdg_{4621} \sin{\left(pdg_{1464} \right)} + \cos{\left(pdg_{1464} \right)}\)
valid 9482923849:
9492920340:
4938429483:
9482923849:
9492920340:
4938429483:
Euler equation: trig square root declare final expr
  1. 9988949211; locally 1231131:
    \((\sin(x))^2 = \frac{1 - \cos(2 x)}{2}\)
    \(\sin^{2}{\left(pdg_{1464} \right)} = \frac{1}{2} - \frac{\cos{\left(2 pdg_{1464} \right)}}{2}\)
no validation is available for declarations 9988949211:
9988949211:
Euler equation: trig square root declare identity
  1. 5832984291; locally 9385720:
    \((\sin(x))^2 + (\cos(x))^2 = 1\)
    \(\sin^{2}{\left(pdg_{1464} \right)} + \cos^{2}{\left(pdg_{1464} \right)} = 1\)
no validation is available for declarations 5832984291:
5832984291:
Euler equation: trig square root divide both sides by
  1. 9889984281; locally 7472666:
    \(2 (\sin(x))^2 = 1 - \cos(2 x)\)
    \(2 \sin^{2}{\left(pdg_{1464} \right)} = 1 - \cos{\left(2 pdg_{1464} \right)}\)
  1. 0003838111:
    \(2\)
    \(2\)
  1. 9988949211; locally 1231131:
    \((\sin(x))^2 = \frac{1 - \cos(2 x)}{2}\)
    \(\sin^{2}{\left(pdg_{1464} \right)} = \frac{1}{2} - \frac{\cos{\left(2 pdg_{1464} \right)}}{2}\)
valid 9889984281:
9988949211:
9889984281:
9988949211:
Euler equation: trig square root swap LHS with RHS
  1. 9482928243; locally 4890284:
    \(\cos(2 x) + (\sin(x))^2 = (\cos(x))^2\)
    \(\sin^{2}{\left(pdg_{1464} \right)} + \cos{\left(2 pdg_{1464} \right)} = \cos^{2}{\left(pdg_{1464} \right)}\)
  1. 9482438243; locally 2936550:
    \((\cos(x))^2 = \cos(2 x) + (\sin(x))^2\)
    \(\cos^{2}{\left(pdg_{1464} \right)} = \sin^{2}{\left(pdg_{1464} \right)} + \cos{\left(2 pdg_{1464} \right)}\)
valid 9482928243:
9482438243:
9482928243:
9482438243:
Euler equation: trig square root expand RHS
  1. 4638429483; locally 3333333:
    \(\exp(2 i x) = (\cos(x)+ i \sin(x))(\cos(x)+ i \sin(x))\)
    \(e^{2 pdg_{1464} pdg_{4621}} = \left(pdg_{4621} \sin{\left(pdg_{1464} \right)} + \cos{\left(pdg_{1464} \right)}\right)^{2}\)
  1. 4598294821; locally 4444444:
    \(\exp(2 i x) = (\cos(x))^2+2i\cos(x)\sin(x)-(\sin(x))^2\)
    \(e^{2 pdg_{1464} pdg_{4621}} = 2 pdg_{4621} \sin{\left(pdg_{1464} \right)} \cos{\left(pdg_{1464} \right)} - \sin^{2}{\left(pdg_{1464} \right)} + \cos^{2}{\left(pdg_{1464} \right)}\)
LHS diff is 0 RHS diff is (pdg4621**2 + 1)*sin(pdg1464)**2 4638429483:
4598294821:
4638429483:
4598294821:
Euler equation: trig square root change variable X to Y
  1. 4938429483; locally 8888888:
    \(\exp(i x) = \cos(x)+i \sin(x)\)
    \(e^{pdg_{1464} pdg_{4621}} = pdg_{4621} \sin{\left(pdg_{1464} \right)} + \cos{\left(pdg_{1464} \right)}\)
  1. 0004089571:
    \(2 x\)
    \(2 pdg_{1464}\)
  2. 0004582412:
    \(x\)
    \(pdg_{1464}\)
  1. 4838429483; locally 9999999:
    \(\exp(2 i x) = \cos(2 x)+i \sin(2 x)\)
    \(e^{2 pdg_{1464} pdg_{4621}} = pdg_{4621} \sin{\left(2 pdg_{1464} \right)} + \cos{\left(2 pdg_{1464} \right)}\)
LHS diff is (1 - exp(pdg1464*pdg4621))*exp(pdg1464*pdg4621) RHS diff is pdg4621*sin(pdg1464) - pdg4621*sin(2*pdg1464) + cos(pdg1464) - cos(2*pdg1464) 4938429483:
4838429483:
4938429483:
4838429483:
Euler equation: trig square root subtract X from both sides
  1. 4827492911; locally 9481000:
    \(\cos(2 x)+(\sin(x))^2 = 1 - (\sin(x))^2\)
    \(\sin^{2}{\left(pdg_{1464} \right)} + \cos{\left(2 pdg_{1464} \right)} = 1 - \sin^{2}{\left(pdg_{1464} \right)}\)
  1. 0006466214:
    \((\sin(x))^2\)
    \(\sin^{2}{\left(pdg_{1464} \right)}\)
  1. 1248277773; locally 7472641:
    \(\cos(2 x) = 1 - 2 (\sin(x))^2\)
    \(\cos{\left(2 pdg_{1464} \right)} = 1 - 2 \sin^{2}{\left(pdg_{1464} \right)}\)
valid 4827492911:
1248277773:
4827492911:
1248277773:
Euler equation: trig square root subtract X from both sides
  1. 7572664728; locally 1029911:
    \(\cos(2 x) + 2 (\sin(x))^2 = 1\)
    \(2 \sin^{2}{\left(pdg_{4037} \right)} + \cos{\left(2 pdg_{4037} \right)} = 1\)
  1. 0008842811:
    \(\cos(2 x)\)
    \(\cos{\left(2 pdg_{1464} \right)}\)
  1. 9889984281; locally 7472666:
    \(2 (\sin(x))^2 = 1 - \cos(2 x)\)
    \(2 \sin^{2}{\left(pdg_{1464} \right)} = 1 - \cos{\left(2 pdg_{1464} \right)}\)
valid 7572664728:
9889984281:
7572664728:
9889984281:
Euler equation: trig square root add X to both sides
  1. 1248277773; locally 7472641:
    \(\cos(2 x) = 1 - 2 (\sin(x))^2\)
    \(\cos{\left(2 pdg_{1464} \right)} = 1 - 2 \sin^{2}{\left(pdg_{1464} \right)}\)
  1. 0007471778:
    \(2(\sin(x))^2\)
    \(2 \sin^{2}{\left(pdg_{1464} \right)}\)
  1. 7572664728; locally 1029911:
    \(\cos(2 x) + 2 (\sin(x))^2 = 1\)
    \(2 \sin^{2}{\left(pdg_{4037} \right)} + \cos{\left(2 pdg_{4037} \right)} = 1\)
valid 1248277773:
7572664728:
1248277773:
7572664728:
Euler equation: trig square root declare initial expr
  1. 4938429483; locally 8888888:
    \(\exp(i x) = \cos(x)+i \sin(x)\)
    \(e^{pdg_{1464} pdg_{4621}} = pdg_{4621} \sin{\left(pdg_{1464} \right)} + \cos{\left(pdg_{1464} \right)}\)
no validation is available for declarations 4938429483:
4938429483:
Euler equation: trig square root select real parts
  1. 9483928192; locally 2222222:
    \(\cos(2 x) + i\sin(2 x) = (\cos(x))^2 + 2 i \cos(x) \sin(x) - (\sin(x))^2\)
    \(pdg_{4621} \sin{\left(2 pdg_{1464} \right)} + \cos{\left(2 pdg_{1464} \right)} = 2 pdg_{4621} \sin{\left(pdg_{1464} \right)} \cos{\left(pdg_{1464} \right)} - \sin^{2}{\left(pdg_{1464} \right)} + \cos^{2}{\left(pdg_{1464} \right)}\)
  1. 9482928242; locally 5828294:
    \(\cos(2 x) = (\cos(x))^2 - (\sin(x))^2\)
    \(\cos{\left(2 pdg_{1464} \right)} = - \sin^{2}{\left(pdg_{1464} \right)} + \cos^{2}{\left(pdg_{1464} \right)}\)
LHS diff is -cos(2*pdg1464) + cos(2*re(pdg1464))*cosh(2*im(pdg1464)) + re(pdg4621*sin(2*pdg1464)) RHS diff is -cos(2*pdg1464) + 2*cos(2*re(pdg1464))*sinh(im(pdg1464))**2 + cos(2*re(pdg1464)) + re(pdg4621*sin(2*pdg1464)) 9483928192:
9482928242:
9483928192:
9482928242:
Euler equation: trig square root add X to both sides
  1. 9482928242; locally 5828294:
    \(\cos(2 x) = (\cos(x))^2 - (\sin(x))^2\)
    \(\cos{\left(2 pdg_{1464} \right)} = - \sin^{2}{\left(pdg_{1464} \right)} + \cos^{2}{\left(pdg_{1464} \right)}\)
  1. 0007894942:
    \((\sin(x))^2\)
    \(\sin^{2}{\left(pdg_{1464} \right)}\)
  1. 9482928243; locally 4890284:
    \(\cos(2 x) + (\sin(x))^2 = (\cos(x))^2\)
    \(\sin^{2}{\left(pdg_{1464} \right)} + \cos{\left(2 pdg_{1464} \right)} = \cos^{2}{\left(pdg_{1464} \right)}\)
valid 9482928242:
9482928243:
9482928242:
9482928243:
Euler equation: trig square root multiply expr 1 by expr 2
  1. 4938429483; locally 8888888:
    \(\exp(i x) = \cos(x)+i \sin(x)\)
    \(e^{pdg_{1464} pdg_{4621}} = pdg_{4621} \sin{\left(pdg_{1464} \right)} + \cos{\left(pdg_{1464} \right)}\)
  2. 4938429483; locally 8888888:
    \(\exp(i x) = \cos(x)+i \sin(x)\)
    \(e^{pdg_{1464} pdg_{4621}} = pdg_{4621} \sin{\left(pdg_{1464} \right)} + \cos{\left(pdg_{1464} \right)}\)
  1. 4638429483; locally 3333333:
    \(\exp(2 i x) = (\cos(x)+ i \sin(x))(\cos(x)+ i \sin(x))\)
    \(e^{2 pdg_{1464} pdg_{4621}} = \left(pdg_{4621} \sin{\left(pdg_{1464} \right)} + \cos{\left(pdg_{1464} \right)}\right)^{2}\)
valid 4938429483:
4938429483:
4638429483:
4938429483:
4938429483:
4638429483:
Euler equation: trig square root LHS of expr 1 equals LHS of expr 2
  1. 9482438243; locally 2936550:
    \((\cos(x))^2 = \cos(2 x) + (\sin(x))^2\)
    \(\cos^{2}{\left(pdg_{1464} \right)} = \sin^{2}{\left(pdg_{1464} \right)} + \cos{\left(2 pdg_{1464} \right)}\)
  2. 3285732911; locally 9123670:
    \((\cos(x))^2 = 1-(\sin(x))^2\)
    \(\cos^{2}{\left(pdg_{1464} \right)} = 1 - \sin^{2}{\left(pdg_{1464} \right)}\)
  1. 4827492911; locally 9481000:
    \(\cos(2 x)+(\sin(x))^2 = 1 - (\sin(x))^2\)
    \(\sin^{2}{\left(pdg_{1464} \right)} + \cos{\left(2 pdg_{1464} \right)} = 1 - \sin^{2}{\left(pdg_{1464} \right)}\)
valid 9482438243:
3285732911:
4827492911:
9482438243:
3285732911:
4827492911:
Euler equation: trig square root LHS of expr 1 equals LHS of expr 2
  1. 4598294821; locally 4444444:
    \(\exp(2 i x) = (\cos(x))^2+2i\cos(x)\sin(x)-(\sin(x))^2\)
    \(e^{2 pdg_{1464} pdg_{4621}} = 2 pdg_{4621} \sin{\left(pdg_{1464} \right)} \cos{\left(pdg_{1464} \right)} - \sin^{2}{\left(pdg_{1464} \right)} + \cos^{2}{\left(pdg_{1464} \right)}\)
  2. 4838429483; locally 9999999:
    \(\exp(2 i x) = \cos(2 x)+i \sin(2 x)\)
    \(e^{2 pdg_{1464} pdg_{4621}} = pdg_{4621} \sin{\left(2 pdg_{1464} \right)} + \cos{\left(2 pdg_{1464} \right)}\)
  1. 9483928192; locally 2222222:
    \(\cos(2 x) + i\sin(2 x) = (\cos(x))^2 + 2 i \cos(x) \sin(x) - (\sin(x))^2\)
    \(pdg_{4621} \sin{\left(2 pdg_{1464} \right)} + \cos{\left(2 pdg_{1464} \right)} = 2 pdg_{4621} \sin{\left(pdg_{1464} \right)} \cos{\left(pdg_{1464} \right)} - \sin^{2}{\left(pdg_{1464} \right)} + \cos^{2}{\left(pdg_{1464} \right)}\)
valid 4598294821:
4838429483:
9483928192:
4598294821:
4838429483:
9483928192:
Euler equation: trig square root subtract X from both sides
  1. 5832984291; locally 9385720:
    \((\sin(x))^2 + (\cos(x))^2 = 1\)
    \(\sin^{2}{\left(pdg_{1464} \right)} + \cos^{2}{\left(pdg_{1464} \right)} = 1\)
  1. 0001111111:
    \((\sin(x))^2\)
    \(\sin^{2}{\left(pdg_{1464} \right)}\)
  1. 3285732911; locally 9123670:
    \((\cos(x))^2 = 1-(\sin(x))^2\)
    \(\cos^{2}{\left(pdg_{1464} \right)} = 1 - \sin^{2}{\left(pdg_{1464} \right)}\)
valid 5832984291:
3285732911:
5832984291:
3285732911:
Euler equation: trigonometric relations divide both sides by
  1. 4742644828; locally 2939484:
    \(\exp(i x)+\exp(-i x) = 2 \cos(x)\)
    \(e^{pdg_{1464} pdg_{4621}} + e^{- pdg_{1464} pdg_{4621}} = 2 \cos{\left(pdg_{1464} \right)}\)
  1. 0004829194:
    \(2\)
    \(2\)
  1. 3829492824; locally 4383592:
    \(\frac{1}{2}\left(\exp(i x)+\exp(-i x) \right) = \cos(x)\)
    \(\frac{e^{pdg_{1464} pdg_{4621}}}{2} + \frac{e^{- pdg_{1464} pdg_{4621}}}{2} = \cos{\left(pdg_{1464} \right)}\)
valid 4742644828:
3829492824:
4742644828:
3829492824:
Euler equation: trigonometric relations declare final expr
  1. 4585932229; locally 4849888:
    \(\cos(x) = \frac{1}{2}\left(\exp(i x)+\exp(-i x) \right)\)
    \(\cos{\left(pdg_{1464} \right)} = \frac{e^{pdg_{1464} pdg_{4621}}}{2} + \frac{e^{- pdg_{1464} pdg_{4621}}}{2}\)
  2. 2103023049; locally 4849959:
    \(\sin(x) = \frac{1}{2i}\left(\exp(i x)-\exp(-i x) \right)\)
    \(\sin{\left(pdg_{1464} \right)} = \frac{e^{pdg_{1464} pdg_{4621}} - e^{- pdg_{1464} pdg_{4621}}}{2 pdg_{4621}}\)
no validation is available for declarations 4585932229:
2103023049:
4585932229:
2103023049:
Euler equation: trigonometric relations divide both sides by
  1. 3942849294; locally 4825483:
    \(\exp(i x)-\exp(-i x) = 2 i \sin(x)\)
    \(e^{pdg_{1464} pdg_{4621}} - e^{- pdg_{1464} pdg_{4621}} = 2 pdg_{4621} \sin{\left(pdg_{1464} \right)}\)
  1. 0001921933:
    \(2 i\)
    \(2 pdg_{4621}\)
  1. 4843995999; locally 1133483:
    \(\frac{1}{2 i}\left(\exp(i x)-\exp(-i x) \right) = \sin(x)\)
    \(\frac{e^{pdg_{1464} pdg_{4621}} - e^{- pdg_{1464} pdg_{4621}}}{2 pdg_{4621}} = \sin{\left(pdg_{1464} \right)}\)
valid 3942849294:
4843995999:
3942849294:
4843995999:
Euler equation: trigonometric relations add expr 1 to expr 2
  1. 4938429483; locally 8888888:
    \(\exp(i x) = \cos(x)+i \sin(x)\)
    \(e^{pdg_{1464} pdg_{4621}} = pdg_{4621} \sin{\left(pdg_{1464} \right)} + \cos{\left(pdg_{1464} \right)}\)
  2. 2123139121; locally 3194924:
    \(-\exp(-i x) = -\cos(x)+i \sin(x)\)
    \(- e^{- pdg_{1464} pdg_{4621}} = pdg_{4621} \sin{\left(pdg_{1464} \right)} - \cos{\left(pdg_{1464} \right)}\)
  1. 3942849294; locally 4825483:
    \(\exp(i x)-\exp(-i x) = 2 i \sin(x)\)
    \(e^{pdg_{1464} pdg_{4621}} - e^{- pdg_{1464} pdg_{4621}} = 2 pdg_{4621} \sin{\left(pdg_{1464} \right)}\)
valid 4938429483:
2123139121:
3942849294:
4938429483:
2123139121:
3942849294:
Euler equation: trigonometric relations swap LHS with RHS
  1. 3829492824; locally 4383592:
    \(\frac{1}{2}\left(\exp(i x)+\exp(-i x) \right) = \cos(x)\)
    \(\frac{e^{pdg_{1464} pdg_{4621}}}{2} + \frac{e^{- pdg_{1464} pdg_{4621}}}{2} = \cos{\left(pdg_{1464} \right)}\)
  1. 4585932229; locally 4849888:
    \(\cos(x) = \frac{1}{2}\left(\exp(i x)+\exp(-i x) \right)\)
    \(\cos{\left(pdg_{1464} \right)} = \frac{e^{pdg_{1464} pdg_{4621}}}{2} + \frac{e^{- pdg_{1464} pdg_{4621}}}{2}\)
valid 3829492824:
4585932229:
3829492824:
4585932229:
Euler equation: trigonometric relations add expr 1 to expr 2
  1. 4938429483; locally 8888888:
    \(\exp(i x) = \cos(x)+i \sin(x)\)
    \(e^{pdg_{1464} pdg_{4621}} = pdg_{4621} \sin{\left(pdg_{1464} \right)} + \cos{\left(pdg_{1464} \right)}\)
  2. 4938429484; locally 8888883:
    \(\exp(-i x) = \cos(x)-i \sin(x)\)
    \(e^{- pdg_{1464} pdg_{4621}} = - pdg_{4621} \sin{\left(pdg_{1464} \right)} + \cos{\left(pdg_{1464} \right)}\)
  1. 4742644828; locally 2939484:
    \(\exp(i x)+\exp(-i x) = 2 \cos(x)\)
    \(e^{pdg_{1464} pdg_{4621}} + e^{- pdg_{1464} pdg_{4621}} = 2 \cos{\left(pdg_{1464} \right)}\)
valid 4938429483:
4938429484:
4742644828:
4938429483:
4938429484:
4742644828:
Euler equation: trigonometric relations multiply both sides by
  1. 4938429484; locally 8888883:
    \(\exp(-i x) = \cos(x)-i \sin(x)\)
    \(e^{- pdg_{1464} pdg_{4621}} = - pdg_{4621} \sin{\left(pdg_{1464} \right)} + \cos{\left(pdg_{1464} \right)}\)
  1. 0003747849:
    \(-1\)
    \(-1\)
  1. 2123139121; locally 3194924:
    \(-\exp(-i x) = -\cos(x)+i \sin(x)\)
    \(- e^{- pdg_{1464} pdg_{4621}} = pdg_{4621} \sin{\left(pdg_{1464} \right)} - \cos{\left(pdg_{1464} \right)}\)
valid 4938429484:
2123139121:
4938429484:
2123139121:
Euler equation: trigonometric relations change variable X to Y
  1. 4938429483; locally 8888888:
    \(\exp(i x) = \cos(x)+i \sin(x)\)
    \(e^{pdg_{1464} pdg_{4621}} = pdg_{4621} \sin{\left(pdg_{1464} \right)} + \cos{\left(pdg_{1464} \right)}\)
  1. 0002393922:
    \(x\)
    \(pdg_{1464}\)
  2. 0003949052:
    \(-x\)
    \(- pdg_{1464}\)
  1. 2394853829; locally 8888881:
    \(\exp(-i x) = \cos(-x)+i \sin(-x)\)
    \(e^{- pdg_{1464} pdg_{4621}} = - pdg_{4621} \sin{\left(pdg_{1464} \right)} + \cos{\left(pdg_{1464} \right)}\)
valid 4938429483:
2394853829:
4938429483:
2394853829:
Euler equation: trigonometric relations swap LHS with RHS
  1. 4843995999; locally 1133483:
    \(\frac{1}{2 i}\left(\exp(i x)-\exp(-i x) \right) = \sin(x)\)
    \(\frac{e^{pdg_{1464} pdg_{4621}} - e^{- pdg_{1464} pdg_{4621}}}{2 pdg_{4621}} = \sin{\left(pdg_{1464} \right)}\)
  1. 2103023049; locally 4849959:
    \(\sin(x) = \frac{1}{2i}\left(\exp(i x)-\exp(-i x) \right)\)
    \(\sin{\left(pdg_{1464} \right)} = \frac{e^{pdg_{1464} pdg_{4621}} - e^{- pdg_{1464} pdg_{4621}}}{2 pdg_{4621}}\)
valid 4843995999:
2103023049:
4843995999:
2103023049:
Euler equation: trigonometric relations function is odd
  1. 4938429482; locally 8888882:
    \(\exp(-i x) = \cos(x)+i \sin(-x)\)
    \(e^{- pdg_{1464} pdg_{4621}} = - pdg_{4621} \sin{\left(pdg_{1464} \right)} + \cos{\left(pdg_{1464} \right)}\)
  1. 0003919391:
    \(x\)
    \(pdg_{1464}\)
  2. 0003981813:
    \(-\sin(x)\)
    \(- \sin{\left(pdg_{1464} \right)}\)
  3. 0002919191:
    \(\sin(-x)\)
    \(- \sin{\left(pdg_{1464} \right)}\)
  1. 4938429484; locally 8888883:
    \(\exp(-i x) = \cos(x)-i \sin(x)\)
    \(e^{- pdg_{1464} pdg_{4621}} = - pdg_{4621} \sin{\left(pdg_{1464} \right)} + \cos{\left(pdg_{1464} \right)}\)
no check performed 4938429482:
4938429484:
4938429482:
4938429484:
Euler equation: trigonometric relations declare initial expr
  1. 4938429483; locally 8888888:
    \(\exp(i x) = \cos(x)+i \sin(x)\)
    \(e^{pdg_{1464} pdg_{4621}} = pdg_{4621} \sin{\left(pdg_{1464} \right)} + \cos{\left(pdg_{1464} \right)}\)
no validation is available for declarations 4938429483:
4938429483:
Euler equation: trigonometric relations function is even
  1. 2394853829; locally 8888881:
    \(\exp(-i x) = \cos(-x)+i \sin(-x)\)
    \(e^{- pdg_{1464} pdg_{4621}} = - pdg_{4621} \sin{\left(pdg_{1464} \right)} + \cos{\left(pdg_{1464} \right)}\)
  1. 0004849392:
    \(x\)
    \(pdg_{1464}\)
  2. 0001030901:
    \(\cos(x)\)
    \(\cos{\left(pdg_{1464} \right)}\)
  3. 0003413423:
    \(\cos(-x)\)
    \(\cos{\left(pdg_{1464} \right)}\)
  1. 4938429482; locally 8888882:
    \(\exp(-i x) = \cos(x)+i \sin(-x)\)
    \(e^{- pdg_{1464} pdg_{4621}} = - pdg_{4621} \sin{\left(pdg_{1464} \right)} + \cos{\left(pdg_{1464} \right)}\)
no check performed 2394853829:
4938429482:
2394853829:
4938429482:
Maxwell equations to electric field wave equation partially differentiate with respect to
  1. 1314864131; locally 1199299:
    \(\vec{ \nabla} \times \vec{H} = \epsilon_0 \frac{\partial }{\partial t}\vec{E}\)
    \(nabla \times pdg_{2069} = pdg_{7940} \frac{d}{d pdg_{1467}} pdg_{4326}\)
  1. 0005626421:
    \(t\)
    \(pdg_{1467}\)
  1. 1314464131; locally 4642245:
    \(\vec{ \nabla} \times \frac{\partial \vec{H}}{\partial t} = \epsilon_0 \frac{\partial^2 \vec{E}}{\partial t^2}\)
    \(pdg_{1467}\)
Nothing to split 1314864131:
1314464131:
1314864131:
1314464131:
Maxwell equations to electric field wave equation substitute LHS of expr 1 into expr 2
  1. 9291999979; locally 2392932:
    \(\vec{ \nabla} \times \vec{ \nabla} \times \vec{E} = -\mu_0\vec{ \nabla} \times \frac{\partial \vec{H}}{\partial t}\)
    \(nabla^{2} pdg_{4326} = - nabla pdg_{6197} \frac{d}{d pdg_{1467}} pdg_{2069}\)
  2. 1314464131; locally 4642245:
    \(\vec{ \nabla} \times \frac{\partial \vec{H}}{\partial t} = \epsilon_0 \frac{\partial^2 \vec{E}}{\partial t^2}\)
    \(pdg_{1467}\)
  1. 3947269979; locally 2962831:
    \(\vec{ \nabla} \times \vec{ \nabla} \times \vec{E} = -\mu_0 \epsilon_0 \frac{\partial^2 \vec{E}}{\partial t^2}\)
    \(pdg_{1467}\)
Nothing to split 9291999979:
1314464131:
3947269979:
9291999979:
1314464131:
3947269979:
Maxwell equations to electric field wave equation declare initial expr
  1. 9991999979; locally 4757562:
    \(\vec{ \nabla} \times \vec{E} = -\mu_0\frac{\partial \vec{H}}{\partial t}\)
    \(- nabla \times pdg_{6238} = - pdg_{6197} \frac{d}{d pdg_{1467}} pdg_{2069}\)
no validation is available for declarations 9991999979:
9991999979:
Maxwell equations to electric field wave equation declare initial expr
  1. 1314864131; locally 1199299:
    \(\vec{ \nabla} \times \vec{H} = \epsilon_0 \frac{\partial }{\partial t}\vec{E}\)
    \(nabla \times pdg_{2069} = pdg_{7940} \frac{d}{d pdg_{1467}} pdg_{4326}\)
no validation is available for declarations 1314864131:
1314864131:
Maxwell equations to electric field wave equation declare initial expr
  1. 9999999981; locally 4857731:
    \(\vec{ \nabla} \cdot \vec{E} = \rho/\epsilon_0\)
    \(nabla pdg_{4326} = \frac{pdg_{3935}}{pdg_{7940}}\)
no validation is available for declarations 9999999981:
9999999981:
Maxwell equations to electric field wave equation substitute LHS of expr 1 into expr 2
  1. 1636453295; locally 3738373:
    \(\vec{ \nabla} \times \vec{ \nabla} \times \vec{E} = - \nabla^2 \vec{E}\)
    \(nabla \times \left(nabla \times pdg_{4326}\right) = - nabla^{2} pdg_{4326}\)
  2. 3947269979; locally 2962831:
    \(\vec{ \nabla} \times \vec{ \nabla} \times \vec{E} = -\mu_0 \epsilon_0 \frac{\partial^2 \vec{E}}{\partial t^2}\)
    \(pdg_{1467}\)
  1. 8494839423; locally 4758592:
    \(\nabla^2 \vec{E} = \mu_0 \epsilon_0 \frac{\partial^2 \vec{E}}{\partial t^2}\)
    \(nabla^{2} pdg_{4326} = \frac{partial pdg_{4326} pdg_{6197} pdg_{7940}}{pdg_{1467}^{2}}\)
Nothing to split 1636453295:
3947269979:
8494839423:
1636453295:
3947269979:
8494839423:
Maxwell equations to electric field wave equation declare assumption
  1. 9919999981; locally 3984852:
    \(\rho = 0\)
    \(pdg_{3935} = 0\)
no validation is available for declarations 9919999981:
9919999981:
Maxwell equations to electric field wave equation declare identity
  1. 7575859295; locally 1939485:
    \(\vec{ \nabla} \times \vec{ \nabla} \times \vec{E} = \vec{ \nabla}( \vec{ \nabla} \cdot \vec{E} - \nabla^2 \vec{E})\)
    \(pdg_{6238} \times \left(nabla \times nabla\right) = \operatorname{nabla}{\left(- nabla^{2} pdg_{6238} + nabla \cdot pdg_{6238} \right)}\)
no validation is available for declarations 7575859295:
7575859295:
Maxwell equations to electric field wave equation declare final expr
  1. 8494839423; locally 4758592:
    \(\nabla^2 \vec{E} = \mu_0 \epsilon_0 \frac{\partial^2 \vec{E}}{\partial t^2}\)
    \(nabla^{2} pdg_{4326} = \frac{partial pdg_{4326} pdg_{6197} pdg_{7940}}{pdg_{1467}^{2}}\)
no validation is available for declarations 8494839423:
8494839423:
Maxwell equations to electric field wave equation take curl of both sides
  1. 9991999979; locally 4757562:
    \(\vec{ \nabla} \times \vec{E} = -\mu_0\frac{\partial \vec{H}}{\partial t}\)
    \(- nabla \times pdg_{6238} = - pdg_{6197} \frac{d}{d pdg_{1467}} pdg_{2069}\)
  1. 9291999979; locally 2392932:
    \(\vec{ \nabla} \times \vec{ \nabla} \times \vec{E} = -\mu_0\vec{ \nabla} \times \frac{\partial \vec{H}}{\partial t}\)
    \(nabla^{2} pdg_{4326} = - nabla pdg_{6197} \frac{d}{d pdg_{1467}} pdg_{2069}\)
no check performed 9991999979:
9291999979:
9991999979:
9291999979:
Maxwell equations to electric field wave equation substitute LHS of expr 1 into expr 2
  1. 7575859295; locally 1939485:
    \(\vec{ \nabla} \times \vec{ \nabla} \times \vec{E} = \vec{ \nabla}( \vec{ \nabla} \cdot \vec{E} - \nabla^2 \vec{E})\)
    \(pdg_{6238} \times \left(nabla \times nabla\right) = \operatorname{nabla}{\left(- nabla^{2} pdg_{6238} + nabla \cdot pdg_{6238} \right)}\)
  2. 7466829492; locally 2837471:
    \(\vec{ \nabla} \cdot \vec{E} = 0\)
    \(nabla \cdot pdg_{6238} = 0\)
  1. 1636453295; locally 3738373:
    \(\vec{ \nabla} \times \vec{ \nabla} \times \vec{E} = - \nabla^2 \vec{E}\)
    \(nabla \times \left(nabla \times pdg_{4326}\right) = - nabla^{2} pdg_{4326}\)
failed 7575859295:
7466829492:
1636453295:
7575859295:
7466829492:
1636453295:
Maxwell equations to electric field wave equation substitute LHS of expr 1 into expr 2
  1. 9999999981; locally 4857731:
    \(\vec{ \nabla} \cdot \vec{E} = \rho/\epsilon_0\)
    \(nabla pdg_{4326} = \frac{pdg_{3935}}{pdg_{7940}}\)
  2. 9919999981; locally 3984852:
    \(\rho = 0\)
    \(pdg_{3935} = 0\)
  1. 7466829492; locally 2837471:
    \(\vec{ \nabla} \cdot \vec{E} = 0\)
    \(nabla \cdot pdg_{6238} = 0\)
LHS diff is pdg3935 - Dot(nabla, pdg6238) RHS diff is 0 9999999981:
9919999981:
7466829492:
9999999981:
9919999981:
7466829492:
curl curl identity replace summation notation with vector notation
  1. 7575859310; locally 3948472:
    \(\hat{x}_m \nabla_n \nabla^m E^n - \hat{x}_n \nabla_m \nabla^m E^n = \vec{ \nabla}( \vec{ \nabla} \cdot \vec{E} - \nabla^2 \vec{E})\)
    \(\)
  1. 7575859312; locally 2109231:
    \(\vec{ \nabla}( \vec{ \nabla} \cdot \vec{E} - \nabla^2 \vec{E}) = \vec{ \nabla}( \vec{ \nabla} \cdot \vec{E} - \nabla^2 \vec{E})\)
    \(\)
Nothing to split 7575859310:
7575859312:
7575859310:
7575859312:
curl curl identity replace curl with LeviCevita summation contravariant
  1. 7575859295; locally 1939485:
    \(\vec{ \nabla} \times \vec{ \nabla} \times \vec{E} = \vec{ \nabla}( \vec{ \nabla} \cdot \vec{E} - \nabla^2 \vec{E})\)
    \(pdg_{6238} \times \left(nabla \times nabla\right) = \operatorname{nabla}{\left(- nabla^{2} pdg_{6238} + nabla \cdot pdg_{6238} \right)}\)
  1. 7575859300; locally 9485482:
    \(\epsilon^{i,j,k} \hat{x}_i \nabla_j ( \vec{ \nabla} \times \vec{E} )_k = \vec{ \nabla}( \vec{ \nabla} \cdot \vec{E} - \nabla^2 \vec{E})\)
    \(\)
Nothing to split 7575859295:
7575859300:
7575859295:
7575859300:
curl curl identity substitute RHS of expr 1 into expr 2
  1. 7575859304; locally 2934842:
    \(\epsilon^{i,j,k} \epsilon_{n,j,k} = \delta^{l}_{\ \ j} \delta^{m}_{\ \ k} - \delta^{l}_{\ \ k} \delta^{m}_{\ \ h}\)
    \(\)
  2. 7575859302; locally 2941319:
    \(\epsilon^{i,j,k} \epsilon_{n,j,k} \hat{x}_i \nabla_j \nabla^m E^n = \vec{ \nabla}( \vec{ \nabla} \cdot \vec{E} - \nabla^2 \vec{E})\)
    \(\)
  1. 7575859306; locally 3949292:
    \(\left( \delta^{l}_{\ \ j} \delta^{m}_{\ \ k} - \delta^{l}_{\ \ k} \delta^{m}_{\ \ h} \right) \hat{x}_i \nabla_j \nabla^m E^n = \vec{ \nabla}( \vec{ \nabla} \cdot \vec{E} - \nabla^2 \vec{E})\)
    \(\)
failed 7575859304:
7575859302:
7575859306:
7575859304:
7575859302:
7575859306:
curl curl identity simplify
  1. 7575859308; locally 3844221:
    \(\left( \delta^{l}_{\ \ j} \delta^{m}_{\ \ k} \hat{x}_i \nabla_j \nabla^m E^n\right)-\left( \delta^{l}_{\ \ k} \delta^{m}_{\ \ h} \hat{x}_i \nabla_j \nabla^m E^n \right) = \vec{ \nabla}( \vec{ \nabla} \cdot \vec{E} - \nabla^2 \vec{E})\)
    \(\)
  1. 7575859310; locally 3948472:
    \(\hat{x}_m \nabla_n \nabla^m E^n - \hat{x}_n \nabla_m \nabla^m E^n = \vec{ \nabla}( \vec{ \nabla} \cdot \vec{E} - \nabla^2 \vec{E})\)
    \(\)
Nothing to split 7575859308:
7575859310:
7575859308:
7575859310:
curl curl identity simplify
  1. 7575859306; locally 3949292:
    \(\left( \delta^{l}_{\ \ j} \delta^{m}_{\ \ k} - \delta^{l}_{\ \ k} \delta^{m}_{\ \ h} \right) \hat{x}_i \nabla_j \nabla^m E^n = \vec{ \nabla}( \vec{ \nabla} \cdot \vec{E} - \nabla^2 \vec{E})\)
    \(\)
  1. 7575859308; locally 3844221:
    \(\left( \delta^{l}_{\ \ j} \delta^{m}_{\ \ k} \hat{x}_i \nabla_j \nabla^m E^n\right)-\left( \delta^{l}_{\ \ k} \delta^{m}_{\ \ h} \hat{x}_i \nabla_j \nabla^m E^n \right) = \vec{ \nabla}( \vec{ \nabla} \cdot \vec{E} - \nabla^2 \vec{E})\)
    \(\)
failed 7575859306:
7575859308:
7575859306:
7575859308:
curl curl identity replace curl with LeviCevita summation contravariant
  1. 7575859300; locally 9485482:
    \(\epsilon^{i,j,k} \hat{x}_i \nabla_j ( \vec{ \nabla} \times \vec{E} )_k = \vec{ \nabla}( \vec{ \nabla} \cdot \vec{E} - \nabla^2 \vec{E})\)
    \(\)
  1. 7575859302; locally 2941319:
    \(\epsilon^{i,j,k} \epsilon_{n,j,k} \hat{x}_i \nabla_j \nabla^m E^n = \vec{ \nabla}( \vec{ \nabla} \cdot \vec{E} - \nabla^2 \vec{E})\)
    \(\)
Nothing to split 7575859300:
7575859302:
7575859300:
7575859302:
curl curl identity declare identity
  1. 7575859295; locally 1939485:
    \(\vec{ \nabla} \times \vec{ \nabla} \times \vec{E} = \vec{ \nabla}( \vec{ \nabla} \cdot \vec{E} - \nabla^2 \vec{E})\)
    \(pdg_{6238} \times \left(nabla \times nabla\right) = \operatorname{nabla}{\left(- nabla^{2} pdg_{6238} + nabla \cdot pdg_{6238} \right)}\)
no validation is available for declarations 7575859295:
7575859295:
curl curl identity claim LHS equals RHS
  1. 7575859312; locally 2109231:
    \(\vec{ \nabla}( \vec{ \nabla} \cdot \vec{E} - \nabla^2 \vec{E}) = \vec{ \nabla}( \vec{ \nabla} \cdot \vec{E} - \nabla^2 \vec{E})\)
    \(\)
Nothing to split 7575859312:
7575859312:
curl curl identity declare identity
  1. 7575859304; locally 2934842:
    \(\epsilon^{i,j,k} \epsilon_{n,j,k} = \delta^{l}_{\ \ j} \delta^{m}_{\ \ k} - \delta^{l}_{\ \ k} \delta^{m}_{\ \ h}\)
    \(\)
no validation is available for declarations 7575859304:
7575859304:
derivation of Schrodinger Equation replace scalar with vector
  1. 9999999870; locally 4948325:
    \(\frac{p}{\hbar} = k\)
    \(\)
  1. 9999998870; locally 2948487:
    \(\frac{ \vec{p}}{\hbar} = \vec{k}\)
    \(\)
no check performed 9999999870:
9999998870:
9999999870:
9999998870:
derivation of Schrodinger Equation substitute RHS of expr 1 into expr 2
  1. 3948574226; locally 2100421:
    \(\psi( \vec{r},t) = \psi_0 \exp\left(i\left(\frac{ \vec{p}\cdot\vec{r}}{\hbar} - \omega t \right) \right)\)
    \(\)
  2. 9999999961; locally 4499582:
    \(\frac{E}{\hbar} = \omega\)
    \(\)
  1. 3948574228; locally 1291313:
    \(\psi( \vec{r},t) = \psi_0 \exp\left(i\left(\frac{ \vec{p}\cdot\vec{r}}{\hbar} - \frac{E t}{\hbar} \right) \right)\)
    \(\)
LHS diff is -pdg9489(pdg9472, pdg1467) + pdg4931/pdg1054 RHS diff is pdg2321 - pdg8330*pdg2718(pdg4621((pdg1134*pdg9472 - pdg1467*pdg6238)/pdg1054)) 3948574226:
9999999961:
3948574228:
3948574226:
9999999961:
3948574228:
derivation of Schrodinger Equation declare initial expr
  1. 3121513111; locally 2934848:
    \(k = \frac{2 \pi}{\lambda}\)
    \(pdg_{5321} = \frac{2 pdg_{3141}}{pdg_{1115}}\)
no validation is available for declarations 3121513111:
3121513111:
derivation of Schrodinger Equation declare initial expr
  1. 1029039903; locally 1039948:
    \(p = m v\)
    \(\)
no validation is available for declarations 1029039903:
1029039903:
derivation of Schrodinger Equation substitute RHS of expr 1 into expr 2
  1. 1020394900; locally 1203491:
    \(p = h/\lambda\)
    \(\)
  2. 3121234211; locally 1039485:
    \(\frac{k}{2\pi} = \lambda\)
    \(\)
  1. 3121234212; locally 2901049:
    \(p = \frac{h k}{2\pi}\)
    \(\)
LHS diff is -pdg1134 + pdg5321/(2*pdg3141) RHS diff is pdg1115 - pdg4413*pdg5321/(2*pdg3141) 1020394900:
3121234211:
3121234212:
1020394900:
3121234211:
3121234212:
derivation of Schrodinger Equation declare initial expr
  1. 9999999960; locally 2949002:
    \(\hbar = h/(2 \pi)\)
    \(\)
no validation is available for declarations 9999999960:
9999999960:
derivation of Schrodinger Equation substitute RHS of expr 1 into expr 2
  1. 3147472131; locally 2939402:
    \(\frac{\omega}{2 \pi} = f\)
    \(\)
  2. 1020394902; locally 3499522:
    \(E = h f\)
    \(\)
  1. 4147472132; locally 2949821:
    \(E = \frac{h \omega}{2 \pi}\)
    \(\)
valid 3147472131:
1020394902:
4147472132:
3147472131:
1020394902:
4147472132:
derivation of Schrodinger Equation simplify
  1. 3948574228; locally 1291313:
    \(\psi( \vec{r},t) = \psi_0 \exp\left(i\left(\frac{ \vec{p}\cdot\vec{r}}{\hbar} - \frac{E t}{\hbar} \right) \right)\)
    \(\)
  1. 3948574230; locally 1305534:
    \(\psi( \vec{r},t) = \psi_0 \exp\left(\frac{i}{\hbar}\left( \vec{p}\cdot\vec{r} - E t \right) \right)\)
    \(\)
LHS diff is 0 RHS diff is pdg8330*(-pdg2718(pdg4621*(pdg1134*pdg9472 - pdg1467*pdg6238)/pdg1054) + pdg2718(pdg4621((pdg1134*pdg9472 - pdg1467*pdg6238)/pdg1054))) 3948574228:
3948574230:
3948574228:
3948574230:
derivation of Schrodinger Equation partially differentiate with respect to
  1. 3948574230; locally 1305534:
    \(\psi( \vec{r},t) = \psi_0 \exp\left(\frac{i}{\hbar}\left( \vec{p}\cdot\vec{r} - E t \right) \right)\)
    \(\)
  1. 0006544644:
    \(t\)
    \(\)
  1. 3948574233; locally 2364546:
    \(\frac{\partial}{\partial t} \psi( \vec{r},t) = \psi_0 \frac{\partial}{\partial t}\exp\left(i\left(\frac{ \vec{p}\cdot\vec{r}}{\hbar} - \frac{E t}{\hbar} \right) \right)\)
    \(\)
no check performed 3948574230:
3948574233:
3948574230:
3948574233:
derivation of Schrodinger Equation declare initial expr
  1. 4298359835; locally 1353583:
    \(E = \frac{1}{2}m v^2\)
    \(\)
no validation is available for declarations 4298359835:
4298359835:
derivation of Schrodinger Equation declare initial expr
  1. 3948574224; locally 3940505:
    \(\psi( \vec{r},t) = \psi_0 \exp\left(i\left( \vec{k}\cdot\vec{r} - \omega t \right) \right)\)
    \(\)
no validation is available for declarations 3948574224:
3948574224:
derivation of Schrodinger Equation divide both sides by
  1. 9999999962; locally 1039013:
    \(p = \hbar k\)
    \(\)
  1. 0001304952:
    \(\hbar\)
    \(\)
  1. 9999999870; locally 4948325:
    \(\frac{p}{\hbar} = k\)
    \(\)
valid 9999999962:
9999999870:
9999999962:
9999999870:
derivation of Schrodinger Equation multiply RHS by unity
  1. 4298359835; locally 1353583:
    \(E = \frac{1}{2}m v^2\)
    \(\)
  1. 0002342425:
    \(m/m\)
    \(\)
  1. 4298359845; locally 2326309:
    \(E = \frac{1}{2m}m^2 v^2\)
    \(\)
valid 4298359835:
4298359845:
4298359835:
4298359845:
derivation of Schrodinger Equation simplify
  1. 4394958389; locally 4938589:
    \(\vec{ \nabla}\cdot \left( \vec{ \nabla} \psi( \vec{r},t) \right) = \frac{i}{\hbar} \vec{ \nabla}\cdot\left( \vec{p} \psi( \vec{r},t) \right)\)
    \(\)
  1. 1648958381; locally 1495034:
    \(\nabla^2 \psi \left( \vec{r},t \right) = \frac{i}{\hbar} \vec{p} \cdot \left( \vec{ \nabla} \psi( \vec{r},t) \right)\)
    \(\)
failed 4394958389:
1648958381:
4394958389:
1648958381:
derivation of Schrodinger Equation raise both sides to power
  1. 1029039903; locally 1039948:
    \(p = m v\)
    \(\)
  1. 0002239424:
    \(2\)
    \(\)
  1. 1029039904; locally 1432042:
    \(p^2 = m^2 v^2\)
    \(\)
no check is performed 1029039903:
1029039904:
1029039903:
1029039904:
derivation of Schrodinger Equation substitute RHS of expr 1 into expr 2
  1. 1029039904; locally 1432042:
    \(p^2 = m^2 v^2\)
    \(\)
  2. 4298359845; locally 2326309:
    \(E = \frac{1}{2m}m^2 v^2\)
    \(\)
  1. 4298359851; locally 3576787:
    \(E = \frac{p^2}{2m}\)
    \(\)
LHS diff is 0 RHS diff is (-pdg1134**2 + pdg1357**2*pdg5156**2)/(2*pdg5156) 1029039904:
4298359845:
4298359851:
1029039904:
4298359845:
4298359851:
derivation of Schrodinger Equation apply gradient to scalar function
  1. 3948574230; locally 1305534:
    \(\psi( \vec{r},t) = \psi_0 \exp\left(\frac{i}{\hbar}\left( \vec{p}\cdot\vec{r} - E t \right) \right)\)
    \(\)
  1. 3948574230; locally 5577584:
    \(\psi( \vec{r},t) = \psi_0 \exp\left(\frac{i}{\hbar}\left( \vec{p}\cdot\vec{r} - E t \right) \right)\)
    \(\)
no check performed 3948574230:
3948574230:
3948574230:
3948574230:
derivation of Schrodinger Equation declare initial expr
  1. 1158485859; locally 2344324:
    \(\frac{-\hbar^2}{2m} \nabla^2 = {\cal H}\)
    \(\)
no validation is available for declarations 1158485859:
1158485859:
derivation of Schrodinger Equation substitute RHS of expr 1 into expr 2
  1. 3948574233; locally 2364546:
    \(\frac{\partial}{\partial t} \psi( \vec{r},t) = \psi_0 \frac{\partial}{\partial t}\exp\left(i\left(\frac{ \vec{p}\cdot\vec{r}}{\hbar} - \frac{E t}{\hbar} \right) \right)\)
    \(\)
  2. 3948574230; locally 1305534:
    \(\psi( \vec{r},t) = \psi_0 \exp\left(\frac{i}{\hbar}\left( \vec{p}\cdot\vec{r} - E t \right) \right)\)
    \(\)
  1. 3948571256; locally 5345567:
    \(\frac{\partial}{\partial t} \psi( \vec{r},t) = \frac{-i}{\hbar}E \psi( \vec{r},t)\)
    \(\)
LHS diff is pdg9489(pdg9472, pdg1467) - Derivative(pdg9489(pdg9472, pdg1467), pdg1467) RHS diff is (pdg1054*pdg8330*pdg2718(pdg4621*(pdg1134*pdg9472 - pdg1467*pdg6238)/pdg1054) + pdg4621*pdg6238*pdg9489(pdg9472, pdg1467))/pdg1054 3948574233:
3948574230:
3948571256:
3948574233:
3948574230:
3948571256:
derivation of Schrodinger Equation divide both sides by
  1. 3121513111; locally 2934848:
    \(k = \frac{2 \pi}{\lambda}\)
    \(pdg_{5321} = \frac{2 pdg_{3141}}{pdg_{1115}}\)
  1. 0001209482:
    \(2 \pi\)
    \(\)
  1. 3121234211; locally 1039485:
    \(\frac{k}{2\pi} = \lambda\)
    \(\)
LHS diff is 0 RHS diff is -pdg1115 + 1/pdg1115 3121513111:
3121234211:
3121513111:
3121234211:
derivation of Schrodinger Equation declare initial expr
  1. 3131211131; locally 9214650:
    \(\omega = 2 \pi f\)
    \(pdg_{2321} = 2 pdg_{3141} pdg_{4201}\)
no validation is available for declarations 3131211131:
3131211131:
derivation of Schrodinger Equation substitute RHS of expr 1 into expr 2
  1. 9999999960; locally 2949002:
    \(\hbar = h/(2 \pi)\)
    \(\)
  2. 4147472132; locally 2949821:
    \(E = \frac{h \omega}{2 \pi}\)
    \(\)
  1. 9999999965; locally 3741728:
    \(E = \omega \hbar\)
    \(\)
valid 9999999960:
4147472132:
9999999965:
9999999960:
4147472132:
9999999965:
derivation of Schrodinger Equation substitute RHS of expr 1 into expr 2
  1. 3948574224; locally 3940505:
    \(\psi( \vec{r},t) = \psi_0 \exp\left(i\left( \vec{k}\cdot\vec{r} - \omega t \right) \right)\)
    \(\)
  2. 9999998870; locally 2948487:
    \(\frac{ \vec{p}}{\hbar} = \vec{k}\)
    \(\)
  1. 3948574226; locally 2100421:
    \(\psi( \vec{r},t) = \psi_0 \exp\left(i\left(\frac{ \vec{p}\cdot\vec{r}}{\hbar} - \omega t \right) \right)\)
    \(\)
LHS diff is -pdg9489(pdg9472, pdg1467) + pdg2046/pdg1054 RHS diff is pdg7394 - pdg8330*pdg2718(pdg4621(-pdg1467*pdg2321 + pdg1134*pdg9472/pdg1054)) 3948574224:
9999998870:
3948574226:
3948574224:
9999998870:
3948574226:
derivation of Schrodinger Equation substitute RHS of expr 1 into expr 2
  1. 3121234212; locally 2901049:
    \(p = \frac{h k}{2\pi}\)
    \(\)
  2. 9999999960; locally 2949002:
    \(\hbar = h/(2 \pi)\)
    \(\)
  1. 9999999962; locally 1039013:
    \(p = \hbar k\)
    \(\)
LHS diff is pdg1054 - pdg1134 RHS diff is -pdg1054*pdg5321 + pdg4413/(2*pdg3141) 3121234212:
9999999960:
9999999962:
3121234212:
9999999960:
9999999962:
derivation of Schrodinger Equation substitute LHS of expr 1 into expr 2
  1. 1158485859; locally 2344324:
    \(\frac{-\hbar^2}{2m} \nabla^2 = {\cal H}\)
    \(\)
  2. 9958485859; locally 1304924:
    \(\frac{-\hbar^2}{2m} \nabla^2 \psi \left( \vec{r},t \right) = i \hbar \frac{\partial}{\partial t} \psi( \vec{r},t)\)
    \(\)
  1. 2258485859; locally 2456546:
    \({\cal H} \psi \left( \vec{r},t \right) = i \hbar \frac{\partial}{\partial t} \psi( \vec{r},t)\)
    \(\)
Nothing to split 1158485859:
9958485859:
2258485859:
1158485859:
9958485859:
2258485859:
derivation of Schrodinger Equation apply divergence
  1. 5985371230; locally 5535257:
    \(\vec{ \nabla} \psi( \vec{r},t) = \frac{i}{\hbar} \vec{p} \psi( \vec{r},t)\)
    \(\)
  1. 4394958389; locally 4938589:
    \(\vec{ \nabla}\cdot \left( \vec{ \nabla} \psi( \vec{r},t) \right) = \frac{i}{\hbar} \vec{ \nabla}\cdot\left( \vec{p} \psi( \vec{r},t) \right)\)
    \(\)
failed 5985371230:
4394958389:
5985371230:
4394958389:
derivation of Schrodinger Equation substitute RHS of expr 1 into expr 2
  1. 4298359851; locally 3576787:
    \(E = \frac{p^2}{2m}\)
    \(\)
  2. 3948571256; locally 5345567:
    \(\frac{\partial}{\partial t} \psi( \vec{r},t) = \frac{-i}{\hbar}E \psi( \vec{r},t)\)
    \(\)
  1. 4348571256; locally 2495835:
    \(\frac{\partial}{\partial t} \psi( \vec{r},t) = \frac{-i}{\hbar}\frac{p^2}{2 m} \psi( \vec{r},t)\)
    \(\)
LHS diff is 0 RHS diff is pdg4621*(pdg1134**2 - 2*pdg5156*pdg6238)*pdg9489(pdg9472, pdg1467)/(2*pdg1054*pdg5156) 4298359851:
3948571256:
4348571256:
4298359851:
3948571256:
4348571256:
derivation of Schrodinger Equation divide both sides by
  1. 9999999965; locally 3741728:
    \(E = \omega \hbar\)
    \(\)
  1. 0003949921:
    \(\hbar\)
    \(\)
  1. 9999999961; locally 4499582:
    \(\frac{E}{\hbar} = \omega\)
    \(\)
valid 9999999965:
9999999961:
9999999965:
9999999961:
derivation of Schrodinger Equation declare initial expr
  1. 1020394902; locally 3499522:
    \(E = h f\)
    \(\)
no validation is available for declarations 1020394902:
1020394902:
derivation of Schrodinger Equation divide both sides by
  1. 3131211131; locally 9214650:
    \(\omega = 2 \pi f\)
    \(pdg_{2321} = 2 pdg_{3141} pdg_{4201}\)
  1. 0002940021:
    \(2 \pi\)
    \(\)
  1. 3147472131; locally 2939402:
    \(\frac{\omega}{2 \pi} = f\)
    \(\)
valid 3131211131:
3147472131:
3131211131:
3147472131:
derivation of Schrodinger Equation substitute RHS of expr 1 into expr 2
  1. 5985371230; locally 5535257:
    \(\vec{ \nabla} \psi( \vec{r},t) = \frac{i}{\hbar} \vec{p} \psi( \vec{r},t)\)
    \(\)
  2. 1648958381; locally 1495034:
    \(\nabla^2 \psi \left( \vec{r},t \right) = \frac{i}{\hbar} \vec{p} \cdot \left( \vec{ \nabla} \psi( \vec{r},t) \right)\)
    \(\)
  1. 2648958382; locally 1049553:
    \(\nabla^2 \psi \left( \vec{r},t \right) = \frac{i}{\hbar} \vec{p} \cdot \left( \frac{i}{\hbar} \vec{p} \psi( \vec{r},t) \right)\)
    \(\)
Nothing to split 5985371230:
1648958381:
2648958382:
5985371230:
1648958381:
2648958382:
derivation of Schrodinger Equation simplify
  1. 2648958382; locally 1049553:
    \(\nabla^2 \psi \left( \vec{r},t \right) = \frac{i}{\hbar} \vec{p} \cdot \left( \frac{i}{\hbar} \vec{p} \psi( \vec{r},t) \right)\)
    \(\)
  1. 2395958385; locally 4959593:
    \(\nabla^2 \psi \left( \vec{r},t \right) = \frac{-p^2}{\hbar} \psi( \vec{r},t)\)
    \(\)
Nothing to split 2648958382:
2395958385:
2648958382:
2395958385:
derivation of Schrodinger Equation multiply both sides by
  1. 4348571256; locally 2495835:
    \(\frac{\partial}{\partial t} \psi( \vec{r},t) = \frac{-i}{\hbar}\frac{p^2}{2 m} \psi( \vec{r},t)\)
    \(\)
  1. 0002436656:
    \(i \hbar\)
    \(\)
  1. 4341171256; locally 3429538:
    \(i \hbar \frac{\partial}{\partial t} \psi( \vec{r},t) = \frac{p^2}{2 m} \psi( \vec{r},t)\)
    \(\)
LHS diff is 0 RHS diff is pdg1134**2*(-pdg4621**2 - 1)*pdg9489(pdg9472, pdg1467)/(2*pdg5156) 4348571256:
4341171256:
4348571256:
4341171256:
derivation of Schrodinger Equation multiply both sides by
  1. 2395958385; locally 4959593:
    \(\nabla^2 \psi \left( \vec{r},t \right) = \frac{-p^2}{\hbar} \psi( \vec{r},t)\)
    \(\)
  1. 0005938585:
    \(\frac{-\hbar^2}{2m}\)
    \(\)
  1. 5868688585; locally 4349493:
    \(\frac{-\hbar^2}{2m} \nabla^2 \psi \left( \vec{r},t \right) = \frac{p^2}{2m} \psi( \vec{r},t)\)
    \(\)
LHS diff is 0 RHS diff is pdg1134**2*(pdg1054 - 1)*pdg9489(pdg9472, pdg1467)/(2*pdg5156) 2395958385:
5868688585:
2395958385:
5868688585:
derivation of Schrodinger Equation substitute RHS of expr 1 into expr 2
  1. 4943571230; locally 3454565:
    \(\vec{ \nabla} \psi( \vec{r},t) = \frac{i}{\hbar} \vec{p} \psi_0 \exp\left(\frac{i}{\hbar}\left( \vec{p}\cdot\vec{r} - E t \right) \right)\)
    \(\)
  2. 3948574230; locally 1305534:
    \(\psi( \vec{r},t) = \psi_0 \exp\left(\frac{i}{\hbar}\left( \vec{p}\cdot\vec{r} - E t \right) \right)\)
    \(\)
  1. 5985371230; locally 5535257:
    \(\vec{ \nabla} \psi( \vec{r},t) = \frac{i}{\hbar} \vec{p} \psi( \vec{r},t)\)
    \(\)
failed 4943571230:
3948574230:
5985371230:
4943571230:
3948574230:
5985371230:
derivation of Schrodinger Equation simplify
  1. 3948574230; locally 5577584:
    \(\psi( \vec{r},t) = \psi_0 \exp\left(\frac{i}{\hbar}\left( \vec{p}\cdot\vec{r} - E t \right) \right)\)
    \(\)
  1. 4943571230; locally 3454565:
    \(\vec{ \nabla} \psi( \vec{r},t) = \frac{i}{\hbar} \vec{p} \psi_0 \exp\left(\frac{i}{\hbar}\left( \vec{p}\cdot\vec{r} - E t \right) \right)\)
    \(\)
failed 3948574230:
4943571230:
3948574230:
4943571230:
derivation of Schrodinger Equation declare final expr
  1. 2258485859; locally 2456546:
    \({\cal H} \psi \left( \vec{r},t \right) = i \hbar \frac{\partial}{\partial t} \psi( \vec{r},t)\)
    \(\)
no validation is available for declarations 2258485859:
2258485859:
derivation of Schrodinger Equation LHS of expr 1 equals LHS of expr 2
  1. 4341171256; locally 3429538:
    \(i \hbar \frac{\partial}{\partial t} \psi( \vec{r},t) = \frac{p^2}{2 m} \psi( \vec{r},t)\)
    \(\)
  2. 5868688585; locally 4349493:
    \(\frac{-\hbar^2}{2m} \nabla^2 \psi \left( \vec{r},t \right) = \frac{p^2}{2m} \psi( \vec{r},t)\)
    \(\)
  1. 9958485859; locally 1304924:
    \(\frac{-\hbar^2}{2m} \nabla^2 \psi \left( \vec{r},t \right) = i \hbar \frac{\partial}{\partial t} \psi( \vec{r},t)\)
    \(\)
Nothing to split 4341171256:
5868688585:
9958485859:
4341171256:
5868688585:
9958485859:
derivation of Schrodinger Equation declare initial expr
  1. 1020394900; locally 1203491:
    \(p = h/\lambda\)
    \(\)
no validation is available for declarations 1020394900:
1020394900:
electric field wave equation: from time dependent to time independent substitute LHS of expr 1 into expr 2
  1. 9499428242; locally 3994928:
    \(E( \vec{r},t) = E( \vec{r})\exp(i \omega t)\)
    \(\operatorname{pdg}_{6238}{\left(pdg_{9472},pdg_{1467} \right)} = \operatorname{pdg}_{2718}{\left(pdg_{1467} pdg_{2321} pdg_{4621} \right)} \operatorname{pdg}_{6238}{\left(pdg_{9472} \right)}\)
  2. 9394939493; locally 3839493:
    \(\nabla^2 E( \vec{r},t) = \mu_0 \epsilon_0 \frac{\partial^2}{\partial t^2} E( \vec{r},t)\)
    \(nabla^{2} \operatorname{pdg}_{6238}{\left(pdg_{9472},pdg_{1467} \right)} = \frac{partial pdg_{6197} pdg_{7940} \operatorname{pdg}_{6238}{\left(pdg_{9472},pdg_{1467} \right)}}{pdg_{1467}^{2}}\)
  1. 2029293929; locally 1029393:
    \(\nabla^2 E( \vec{r})\exp(i \omega t) = \mu_0 \epsilon_0 \frac{\partial^2}{\partial t^2} E( \vec{r})\exp(i \omega t)\)
    \(nabla^{2} \operatorname{pdg}_{6238}{\left(pdg_{9472} \right)} e^{pdg_{1467} pdg_{2321} pdg_{4621}} = \frac{partial pdg_{6197} pdg_{7940} \operatorname{pdg}_{6238}{\left(pdg_{9472} \right)} e^{pdg_{1467} pdg_{2321} pdg_{4621}}}{pdg_{1467}^{2}}\)
LHS diff is nabla**2*(pdg2718(pdg1467*pdg2321*pdg4621) - exp(pdg1467*pdg2321*pdg4621))*pdg6238(pdg9472) RHS diff is partial*pdg6197*pdg7940*(pdg2718(pdg1467*pdg2321*pdg4621) - exp(pdg1467*pdg2321*pdg4621))*pdg6238(pdg9472)/pdg1467**2 9499428242:
9394939493:
2029293929:
9499428242:
9394939493:
2029293929:
electric field wave equation: from time dependent to time independent differentiate with respect to
  1. 2029293929; locally 1029393:
    \(\nabla^2 E( \vec{r})\exp(i \omega t) = \mu_0 \epsilon_0 \frac{\partial^2}{\partial t^2} E( \vec{r})\exp(i \omega t)\)
    \(nabla^{2} \operatorname{pdg}_{6238}{\left(pdg_{9472} \right)} e^{pdg_{1467} pdg_{2321} pdg_{4621}} = \frac{partial pdg_{6197} pdg_{7940} \operatorname{pdg}_{6238}{\left(pdg_{9472} \right)} e^{pdg_{1467} pdg_{2321} pdg_{4621}}}{pdg_{1467}^{2}}\)
  1. 0003232242:
    \(t\)
    \(pdg_{1467}\)
  1. 4985825552; locally 2939392:
    \(\nabla^2 E( \vec{r})\exp(i \omega t) = i \omega \mu_0 \epsilon_0 \frac{\partial}{\partial t} E( \vec{r})\exp(i \omega t)\)
    \(nabla^{2} \operatorname{pdg}_{6238}{\left(pdg_{9472} \right)} e^{pdg_{1467} pdg_{2321} pdg_{4621}} = pdg_{2321} pdg_{4621} pdg_{6197} pdg_{7940} \frac{\partial}{\partial pdg_{1467}} \operatorname{pdg}_{6238}{\left(pdg_{9472} \right)} e^{pdg_{1467} pdg_{2321} pdg_{4621}}\)
no check performed 2029293929:
4985825552:
2029293929:
4985825552:
electric field wave equation: from time dependent to time independent declare initial expr
  1. 8572852424; locally 9393848:
    \(\vec{E} = E( \vec{r},t)\)
    \(pdg_{4326} = \operatorname{pdg}_{6238}{\left(pdg_{9472},pdg_{1467} \right)}\)
no validation is available for declarations 8572852424:
8572852424:
electric field wave equation: from time dependent to time independent declare guess solution
  1. 8494839423; locally 4758592:
    \(\nabla^2 \vec{E} = \mu_0 \epsilon_0 \frac{\partial^2 \vec{E}}{\partial t^2}\)
    \(nabla^{2} pdg_{4326} = \frac{partial pdg_{4326} pdg_{6197} pdg_{7940}}{pdg_{1467}^{2}}\)
  1. 9499428242; locally 3994928:
    \(E( \vec{r},t) = E( \vec{r})\exp(i \omega t)\)
    \(\operatorname{pdg}_{6238}{\left(pdg_{9472},pdg_{1467} \right)} = \operatorname{pdg}_{2718}{\left(pdg_{1467} pdg_{2321} pdg_{4621} \right)} \operatorname{pdg}_{6238}{\left(pdg_{9472} \right)}\)
no validation is available for declarations 8494839423:
9499428242:
8494839423:
9499428242:
electric field wave equation: from time dependent to time independent substitute LHS of expr 1 into expr 2
  1. 8572852424; locally 9393848:
    \(\vec{E} = E( \vec{r},t)\)
    \(pdg_{4326} = \operatorname{pdg}_{6238}{\left(pdg_{9472},pdg_{1467} \right)}\)
  2. 8494839423; locally 4758592:
    \(\nabla^2 \vec{E} = \mu_0 \epsilon_0 \frac{\partial^2 \vec{E}}{\partial t^2}\)
    \(nabla^{2} pdg_{4326} = \frac{partial pdg_{4326} pdg_{6197} pdg_{7940}}{pdg_{1467}^{2}}\)
  1. 9394939493; locally 3839493:
    \(\nabla^2 E( \vec{r},t) = \mu_0 \epsilon_0 \frac{\partial^2}{\partial t^2} E( \vec{r},t)\)
    \(nabla^{2} \operatorname{pdg}_{6238}{\left(pdg_{9472},pdg_{1467} \right)} = \frac{partial pdg_{6197} pdg_{7940} \operatorname{pdg}_{6238}{\left(pdg_{9472},pdg_{1467} \right)}}{pdg_{1467}^{2}}\)
valid 8572852424:
8494839423:
9394939493:
8572852424:
8494839423:
9394939493:
electric field wave equation: from time dependent to time independent differentiate with respect to
  1. 4985825552; locally 2939392:
    \(\nabla^2 E( \vec{r})\exp(i \omega t) = i \omega \mu_0 \epsilon_0 \frac{\partial}{\partial t} E( \vec{r})\exp(i \omega t)\)
    \(nabla^{2} \operatorname{pdg}_{6238}{\left(pdg_{9472} \right)} e^{pdg_{1467} pdg_{2321} pdg_{4621}} = pdg_{2321} pdg_{4621} pdg_{6197} pdg_{7940} \frac{\partial}{\partial pdg_{1467}} \operatorname{pdg}_{6238}{\left(pdg_{9472} \right)} e^{pdg_{1467} pdg_{2321} pdg_{4621}}\)
  1. 0003232242:
    \(t\)
    \(pdg_{1467}\)
  1. 1858578388; locally 4958573:
    \(\nabla^2 E( \vec{r})\exp(i \omega t) = - \omega^2 \mu_0 \epsilon_0 E( \vec{r})\exp(i \omega t)\)
    \(nabla^{2} \operatorname{pdg}_{6238}{\left(pdg_{9472} \right)} e^{pdg_{1467} pdg_{2321} pdg_{4621}} = - pdg_{2321}^{2} pdg_{6197} pdg_{7940} \operatorname{pdg}_{6238}{\left(pdg_{9472} \right)} e^{pdg_{1467} pdg_{2321} pdg_{4621}}\)
no check performed 4985825552:
1858578388:
4985825552:
1858578388:
electric field wave equation: from time dependent to time independent simplify
  1. 9485384858; locally 9495903:
    \(\nabla^2 E( \vec{r})\exp(i \omega t) = - \frac{\omega^2}{c^2} E( \vec{r})\exp(i \omega t)\)
    \(nabla^{2} \operatorname{pdg}_{2718}{\left(pdg_{1467} pdg_{2321} pdg_{4621} \right)} \operatorname{pdg}_{6238}{\left(pdg_{9472} \right)} = - \frac{pdg_{2321}^{2} \operatorname{pdg}_{2718}{\left(pdg_{1467} pdg_{2321} pdg_{4621} \right)} \operatorname{pdg}_{6238}{\left(pdg_{9472} \right)}}{pdg_{4567}^{2}}\)
  1. 3485475729; locally 3949492:
    \(\nabla^2 E( \vec{r}) = - \frac{\omega^2}{c^2} E( \vec{r})\)
    \(nabla^{2} \operatorname{pdg}_{6238}{\left(pdg_{9472} \right)} = - \frac{pdg_{2321}^{2} \operatorname{pdg}_{6238}{\left(pdg_{9472} \right)}}{pdg_{4567}^{2}}\)
LHS diff is nabla**2*(pdg2718(pdg1467*pdg2321*pdg4621) - 1)*pdg6238(pdg9472) RHS diff is pdg2321**2*(1 - pdg2718(pdg1467*pdg2321*pdg4621))*pdg6238(pdg9472)/pdg4567**2 9485384858:
3485475729:
9485384858:
3485475729:
electric field wave equation: from time dependent to time independent declare final expr
  1. 3485475729; locally 3949492:
    \(\nabla^2 E( \vec{r}) = - \frac{\omega^2}{c^2} E( \vec{r})\)
    \(nabla^{2} \operatorname{pdg}_{6238}{\left(pdg_{9472} \right)} = - \frac{pdg_{2321}^{2} \operatorname{pdg}_{6238}{\left(pdg_{9472} \right)}}{pdg_{4567}^{2}}\)
no validation is available for declarations 3485475729:
3485475729:
electric field wave equation: from time dependent to time independent substitute LHS of expr 1 into expr 2
  1. 1858578388; locally 4958573:
    \(\nabla^2 E( \vec{r})\exp(i \omega t) = - \omega^2 \mu_0 \epsilon_0 E( \vec{r})\exp(i \omega t)\)
    \(nabla^{2} \operatorname{pdg}_{6238}{\left(pdg_{9472} \right)} e^{pdg_{1467} pdg_{2321} pdg_{4621}} = - pdg_{2321}^{2} pdg_{6197} pdg_{7940} \operatorname{pdg}_{6238}{\left(pdg_{9472} \right)} e^{pdg_{1467} pdg_{2321} pdg_{4621}}\)
  2. 4585828572; locally 4949582:
    \(\epsilon_0 \mu_0 = \frac{1}{c^2}\)
    \(pdg_{6197} pdg_{7940} = \frac{1}{pdg_{4567}^{2}}\)
  1. 9485384858; locally 9495903:
    \(\nabla^2 E( \vec{r})\exp(i \omega t) = - \frac{\omega^2}{c^2} E( \vec{r})\exp(i \omega t)\)
    \(nabla^{2} \operatorname{pdg}_{2718}{\left(pdg_{1467} pdg_{2321} pdg_{4621} \right)} \operatorname{pdg}_{6238}{\left(pdg_{9472} \right)} = - \frac{pdg_{2321}^{2} \operatorname{pdg}_{2718}{\left(pdg_{1467} pdg_{2321} pdg_{4621} \right)} \operatorname{pdg}_{6238}{\left(pdg_{9472} \right)}}{pdg_{4567}^{2}}\)
LHS diff is -nabla**2*pdg2718(pdg1467*pdg2321*pdg4621)*pdg6238(pdg9472) + pdg6197*pdg7940 RHS diff is (pdg2321**2*pdg2718(pdg1467*pdg2321*pdg4621)*pdg6238(pdg9472) + 1)/pdg4567**2 1858578388:
4585828572:
9485384858:
1858578388:
4585828572:
9485384858:
electric field wave equation: from time dependent to time independent declare initial expr
  1. 8494839423; locally 4758592:
    \(\nabla^2 \vec{E} = \mu_0 \epsilon_0 \frac{\partial^2 \vec{E}}{\partial t^2}\)
    \(nabla^{2} pdg_{4326} = \frac{partial pdg_{4326} pdg_{6197} pdg_{7940}}{pdg_{1467}^{2}}\)
no validation is available for declarations 8494839423:
8494839423:
electric field wave equation: from time dependent to time independent declare initial expr
  1. 4585828572; locally 4949582:
    \(\epsilon_0 \mu_0 = \frac{1}{c^2}\)
    \(pdg_{6197} pdg_{7940} = \frac{1}{pdg_{4567}^{2}}\)
no validation is available for declarations 4585828572:
4585828572:
frequency relations declare initial expr
  1. 5900595848; locally 3293094:
    \(k = \frac{\omega}{v}\)
    \(pdg_{5321} = \frac{pdg_{2321}}{pdg_{1357}}\)
no validation is available for declarations 5900595848:
5900595848:
frequency relations substitute RHS of expr 1 into expr 2
  1. 3131111133; locally 8482459:
    \(T = 1 / f\)
    \(pdg_{9491} = \frac{1}{pdg_{4201}}\)
  2. 0404050504; locally 3294004:
    \(\lambda = \frac{v}{f}\)
    \(pdg_{1115} = \frac{pdg_{1357}}{pdg_{4201}}\)
  1. 1293923844; locally 3993940:
    \(\lambda = v T\)
    \(pdg_{1115} = pdg_{1357} pdg_{9491}\)
valid 3131111133:
0404050504:
1293923844:
3131111133:
0404050504:
1293923844:
frequency relations declare initial expr
  1. 0404050504; locally 3294004:
    \(\lambda = \frac{v}{f}\)
    \(pdg_{1115} = \frac{pdg_{1357}}{pdg_{4201}}\)
no validation is available for declarations 0404050504:
0404050504:
frequency relations substitute RHS of expr 1 into expr 2
  1. 3132131132; locally 8374556:
    \(\omega = \frac{2\pi}{T}\)
    \(pdg_{2321} = \frac{2 pdg_{3141}}{pdg_{9491}}\)
  2. 5900595848; locally 3293094:
    \(k = \frac{\omega}{v}\)
    \(pdg_{5321} = \frac{pdg_{2321}}{pdg_{1357}}\)
  1. 0934990943; locally 8394853:
    \(k = \frac{2 \pi}{v T}\)
    \(pdg_{5321} = \frac{2 pdg_{3141}}{pdg_{1357} pdg_{9491}}\)
LHS diff is 0 RHS diff is (pdg2321*pdg9491 - 2*pdg3141)/(pdg1357*pdg9491) 3132131132:
5900595848:
0934990943:
3132131132:
5900595848:
0934990943:
frequency relations multiply both sides by
  1. 3131111133; locally 8482459:
    \(T = 1 / f\)
    \(pdg_{9491} = \frac{1}{pdg_{4201}}\)
  1. 0005749291:
    \(f\)
    \(pdg_{6235}\)
  1. 2131616531; locally 8341200:
    \(T f = 1\)
    \(pdg_{4201} pdg_{9491} = 1\)
LHS diff is pdg9491*(-pdg4201 + pdg6235) RHS diff is (-pdg4201 + pdg6235)/pdg4201 3131111133:
2131616531:
3131111133:
2131616531:
frequency relations declare initial expr
  1. 3131211131; locally 9214650:
    \(\omega = 2 \pi f\)
    \(pdg_{2321} = 2 pdg_{3141} pdg_{4201}\)
no validation is available for declarations 3131211131:
3131211131:
frequency relations declare final expr
  1. 3121513111; locally 2934848:
    \(k = \frac{2 \pi}{\lambda}\)
    \(pdg_{5321} = \frac{2 pdg_{3141}}{pdg_{1115}}\)
no validation is available for declarations 3121513111:
3121513111:
frequency relations substitute RHS of expr 1 into expr 2
  1. 1293923844; locally 3993940:
    \(\lambda = v T\)
    \(pdg_{1115} = pdg_{1357} pdg_{9491}\)
  2. 0934990943; locally 8394853:
    \(k = \frac{2 \pi}{v T}\)
    \(pdg_{5321} = \frac{2 pdg_{3141}}{pdg_{1357} pdg_{9491}}\)
  1. 3121513111; locally 2934848:
    \(k = \frac{2 \pi}{\lambda}\)
    \(pdg_{5321} = \frac{2 pdg_{3141}}{pdg_{1115}}\)
valid 1293923844:
0934990943:
3121513111:
1293923844:
0934990943:
3121513111:
frequency relations declare initial expr
  1. 3131111133; locally 8482459:
    \(T = 1 / f\)
    \(pdg_{9491} = \frac{1}{pdg_{4201}}\)
no validation is available for declarations 3131111133:
3131111133:
frequency relations divide both sides by
  1. 2131616531; locally 8341200:
    \(T f = 1\)
    \(pdg_{4201} pdg_{9491} = 1\)
  1. 0008837284:
    \(T\)
    \(pdg_{9491}\)
  1. 2113211456; locally 9380032:
    \(f = 1/T\)
    \(pdg_{4201} = \frac{1}{pdg_{9491}}\)
valid 2131616531:
2113211456:
2131616531:
2113211456:
frequency relations substitute RHS of expr 1 into expr 2
  1. 2113211456; locally 9380032:
    \(f = 1/T\)
    \(pdg_{4201} = \frac{1}{pdg_{9491}}\)
  2. 3131211131; locally 9214650:
    \(\omega = 2 \pi f\)
    \(pdg_{2321} = 2 pdg_{3141} pdg_{4201}\)
  1. 3132131132; locally 8374556:
    \(\omega = \frac{2\pi}{T}\)
    \(pdg_{2321} = \frac{2 pdg_{3141}}{pdg_{9491}}\)
LHS diff is 0 RHS diff is 2*pdg3141*(pdg4201*pdg9491 - 1)/pdg9491 2113211456:
3131211131:
3132131132:
2113211456:
3131211131:
3132131132:
integration by parts declare final expr
  1. 8489593964; locally 3848329:
    \(\int u dv = u v - \int v du\)
    \(\int pdg_{4221}\, dpdg_{5177} = pdg_{4221} pdg_{5177} - \int pdg_{5177}\, dpdg_{4221}\)
no validation is available for declarations 8489593964:
8489593964:
integration by parts subtract X from both sides
  1. 8489593958; locally 3494854:
    \(d(u v) = u dv + v du\)
    \(pdg_{4221}\)
  1. 0009492929:
    \(v du\)
    \(pdg_{4221} pdg_{5177}\)
  1. 8489593960; locally 2938188:
    \(d(u v) - v du = u dv\)
    \(pdg_{4221}\)
Nothing to split 8489593958:
8489593960:
8489593958:
8489593960:
integration by parts swap LHS with RHS
  1. 8489593960; locally 2938188:
    \(d(u v) - v du = u dv\)
    \(pdg_{4221}\)
  1. 8489593962; locally 2938190:
    \(u dv = d(u v) - v du\)
    \(pdg_{4221}\)
Nothing to split 8489593960:
8489593962:
8489593960:
8489593962:
integration by parts declare identity
  1. 8489593958; locally 3494854:
    \(d(u v) = u dv + v du\)
    \(pdg_{4221}\)
no validation is available for declarations 8489593958:
8489593958:
integration by parts indefinite integration
  1. 8489593962; locally 2938190:
    \(u dv = d(u v) - v du\)
    \(pdg_{4221}\)
  1. 8489593964; locally 3848329:
    \(\int u dv = u v - \int v du\)
    \(\int pdg_{4221}\, dpdg_{5177} = pdg_{4221} pdg_{5177} - \int pdg_{5177}\, dpdg_{4221}\)
Nothing to split 8489593962:
8489593964:
8489593962:
8489593964:
particle in a 1D box change variable X to Y
  1. 9988949211; locally 1231131:
    \((\sin(x))^2 = \frac{1 - \cos(2 x)}{2}\)
    \(\sin^{2}{\left(pdg_{1464} \right)} = \frac{1}{2} - \frac{\cos{\left(2 pdg_{1464} \right)}}{2}\)
  1. 0009484724:
    \(\frac{n \pi}{W}x\)
    \(\frac{pdg_{1592} pdg_{3141} pdg_{4037}}{pdg_{2523}}\)
  2. 0004934845:
    \(x\)
    \(pdg_{1464}\)
  1. 7575738420; locally 0100404:
    \(\left(\sin\left(\frac{n \pi}{W}x\right) \right)^2 = \frac{1-\cos\left(2\frac{n \pi}{W}x\right)}{2}\)
    \(\sin^{2}{\left(\frac{pdg_{1592} pdg_{3141} pdg_{4037}}{pdg_{2523}} \right)} = \frac{1}{2} - \frac{\cos{\left(\frac{2 pdg_{1464} pdg_{1592} pdg_{3141}}{pdg_{2523}} \right)}}{2}\)
LHS diff is sin(pdg1464)**2 - sin(pdg1592*pdg3141*pdg4037/pdg2523)**2 RHS diff is -cos(2*pdg1464)/2 + cos(2*pdg1464*pdg1592*pdg3141/pdg2523)/2 9988949211:
7575738420:
9988949211:
7575738420:
particle in a 1D box square root both sides
  1. 8485867742; locally 1029384:
    \(\frac{2}{W} = a^2\)
    \(\frac{2}{pdg_{2523}} = pdg_{9139}^{2}\)
  1. 9485747245; locally 9394857:
    \(\sqrt{\frac{2}{W}} = a\)
    \(\sqrt{2} \sqrt{\frac{1}{pdg_{2523}}} = pdg_{9139}\)
  2. 9485747246; locally 9394858:
    \(-\sqrt{\frac{2}{W}} = a\)
    \(- \sqrt{2} \sqrt{\frac{1}{pdg_{2523}}} = pdg_{9139}\)
no check performed 8485867742:
9485747245:
9485747246:
8485867742:
9485747245:
9485747246:
particle in a 1D box declare guess solution
  1. 5727578862; locally 7572748:
    \(\frac{d^2}{dx^2} \psi(x) = -k^2 \psi(x)\)
    \(pdg_{9199}\)
  1. 8582885111; locally 7572118:
    \(\psi(x) = a \sin(kx) + b \cos(kx)\)
    \(\operatorname{pdg}_{9489}{\left(pdg_{4037} \right)} = pdg_{1939} \cos{\left(pdg_{4037} pdg_{5321} \right)} + pdg_{9139} \sin{\left(pdg_{4037} pdg_{5321} \right)}\)
no validation is available for declarations 5727578862:
8582885111:
5727578862:
8582885111:
particle in a 1D box substitute LHS of expr 1 into expr 2
  1. 9485747245; locally 9394857:
    \(\sqrt{\frac{2}{W}} = a\)
    \(\sqrt{2} \sqrt{\frac{1}{pdg_{2523}}} = pdg_{9139}\)
  2. 2944838499; locally 3452131:
    \(\psi(x) = a \sin(\frac{n \pi}{W} x)\)
    \(\operatorname{pdg}_{9489}{\left(pdg_{1464} \right)} = pdg_{9139} \sin{\left(\frac{pdg_{1592} pdg_{3141} pdg_{4037}}{pdg_{2523}} \right)}\)
  1. 9393939991; locally 8474766:
    \(\psi(x) = -\sqrt{\frac{2}{W}} \sin\left(\frac{n \pi}{W} x\right)\)
    \(\operatorname{pdg}_{9489}{\left(pdg_{1464} \right)} = - \sqrt{2} \sqrt{\frac{1}{pdg_{2523}}} \sin{\left(\frac{pdg_{1464} pdg_{1592} pdg_{3141}}{pdg_{2523}} \right)}\)
LHS diff is 0 RHS diff is pdg9139*sin(pdg1592*pdg3141*pdg4037/pdg2523) + sqrt(2)*sqrt(1/pdg2523)*sin(pdg1464*pdg1592*pdg3141/pdg2523) 9485747245:
2944838499:
9393939991:
9485747245:
2944838499:
9393939991:
particle in a 1D box change variable X to Y
  1. 5857434758; locally 0021030:
    \(\int a dx = a x\)
    \(\int pdg_{9139}\, dpdg_{1464} = pdg_{1464} pdg_{9139}\)
  1. 0002929944:
    \(1/2\)
    \(\frac{1}{2}\)
  2. 0004948585:
    \(a\)
    \(pdg_{9139}\)
  1. 8575746378; locally 9339495:
    \(\int \frac{1}{2} dx = \frac{1}{2} x\)
    \(\int \frac{1}{2}\, dpdg_{1464} = \frac{pdg_{1464}}{2}\)
LHS diff is pdg1464*(pdg9139 - 1/2) RHS diff is pdg1464*(pdg9139 - 1/2) 5857434758:
8575746378:
5857434758:
8575746378:
particle in a 1D box simplify
  1. 8575748999; locally 2838288:
    \(\frac{d^2}{dx^2} \left(a \sin(k x) + b \cos(k x) \right) = -k^2 \left(a \sin(kx) + b \cos(kx) \right)\)
    \(\frac{d^{2} \left(pdg_{1939} \cos{\left(pdg_{1464} pdg_{5321} \right)} + pdg_{9139} \sin{\left(pdg_{1464} pdg_{5321} \right)}\right)}{pdg_{9199}^{2}} = - pdg_{5321}^{2} \left(pdg_{1939} \cos{\left(pdg_{1464} pdg_{5321} \right)} + pdg_{9139} \sin{\left(pdg_{1464} pdg_{5321} \right)}\right)\)
  1. 8485757728; locally 8474762:
    \(a \frac{d^2}{dx^2}\sin(kx) + b \frac{d^2}{dx^2}\cos(k x) = -a k^2 \sin(kx) + -b k^2 \cos(kx)\)
    \(pdg_{9199}\)
Nothing to split 8575748999:
8485757728:
8575748999:
8485757728:
particle in a 1D box declare identity
  1. 5857434758; locally 0021030:
    \(\int a dx = a x\)
    \(\int pdg_{9139}\, dpdg_{1464} = pdg_{1464} pdg_{9139}\)
no validation is available for declarations 5857434758:
5857434758:
particle in a 1D box declare identity
  1. 0948572140; locally 3992939:
    \(\int \cos(a x) dx = \frac{1}{a}\sin(a x)\)
    \(\int \cos{\left(pdg_{1464} pdg_{9139} \right)}\, dpdg_{9199} = \frac{\sin{\left(pdg_{1464} pdg_{9139} \right)}}{pdg_{9139}}\)
no validation is available for declarations 0948572140:
0948572140:
particle in a 1D box substitute LHS of expr 1 into expr 2
  1. 8575746378; locally 9339495:
    \(\int \frac{1}{2} dx = \frac{1}{2} x\)
    \(\int \frac{1}{2}\, dpdg_{1464} = \frac{pdg_{1464}}{2}\)
  2. 1202310110; locally 0203020:
    \(\frac{1}{a^2} = \int_0^W \frac{1}{2} dx - \frac{1}{2} \int_0^W \cos\left(2\frac{n \pi}{W}x\right) dx\)
    \(\frac{1}{pdg_{9139}^{2}} = \int\limits_{0}^{pdg_{2523}} \left(\frac{pdg_{9199}}{2} - \frac{\int\limits_{0}^{pdg_{2523}} \cos{\left(\frac{2 pdg_{1592} pdg_{3141} pdg_{4037}}{pdg_{2523}} \right)}\, dpdg_{4037}}{2}\right)\, dpdg_{4037}\)
  1. 1202312210; locally 8584733:
    \(\frac{1}{a^2} = \frac{1}{2}W - \frac{1}{2} \int_0^W \cos\left(2\frac{n \pi}{W}x\right) dx\)
    \(\frac{1}{pdg_{9139}^{2}} = \frac{pdg_{2523}}{2} - \frac{\int\limits_{0}^{pdg_{2523}} \cos{\left(\frac{2 pdg_{1592} pdg_{3141} pdg_{4037}}{pdg_{2523}} \right)}\, dpdg_{4037}}{2}\)
LHS diff is 0 RHS diff is Piecewise((pdg2523*(2*pdg1592*pdg3141*pdg9199 - 2*pdg1592*pdg3141 - pdg2523*sin(2*pdg1592*pdg3141) + sin(2*pdg1592*pdg3141))/(4*pdg1592*pdg3141), Ne(pdg1592*pdg3141/pdg2523, 0)), (pdg2523*(-pdg2523 + pdg9199)/2, True)) 8575746378:
1202310110:
1202312210:
8575746378:
1202310110:
1202312210:
particle in a 1D box substitute LHS of expr 1 into expr 2
  1. 9485747246; locally 9394858:
    \(-\sqrt{\frac{2}{W}} = a\)
    \(- \sqrt{2} \sqrt{\frac{1}{pdg_{2523}}} = pdg_{9139}\)
  2. 2944838499; locally 3452131:
    \(\psi(x) = a \sin(\frac{n \pi}{W} x)\)
    \(\operatorname{pdg}_{9489}{\left(pdg_{1464} \right)} = pdg_{9139} \sin{\left(\frac{pdg_{1592} pdg_{3141} pdg_{4037}}{pdg_{2523}} \right)}\)
  1. 9393939992; locally 8474765:
    \(\psi(x) = \sqrt{\frac{2}{W}} \sin\left(\frac{n \pi}{W} x\right)\)
    \(\operatorname{pdg}_{9489}{\left(pdg_{1464} \right)} = \sqrt{2} \sqrt{\frac{1}{pdg_{2523}}} \sin{\left(\frac{pdg_{1464} pdg_{1592} pdg_{3141}}{pdg_{2523}} \right)}\)
LHS diff is 0 RHS diff is pdg9139*sin(pdg1592*pdg3141*pdg4037/pdg2523) - sqrt(2)*sqrt(1/pdg2523)*sin(pdg1464*pdg1592*pdg3141/pdg2523) 9485747246:
2944838499:
9393939992:
9485747246:
2944838499:
9393939992:
particle in a 1D box expand integrand
  1. 9858028950; locally 0495054:
    \(\frac{1}{a^2} = \int_0^W \frac{1-\cos\left(2\frac{n \pi}{W}x\right)}{2} dx\)
    \(\frac{1}{pdg_{9139}^{2}} = \int\limits_{0}^{pdg_{2523}} \left(\frac{1}{2} - \frac{\cos{\left(\frac{2 pdg_{1464} pdg_{1592} pdg_{3141}}{pdg_{2523}} \right)}}{2}\right)\, dpdg_{1464}\)
  1. 1202310110; locally 0203020:
    \(\frac{1}{a^2} = \int_0^W \frac{1}{2} dx - \frac{1}{2} \int_0^W \cos\left(2\frac{n \pi}{W}x\right) dx\)
    \(\frac{1}{pdg_{9139}^{2}} = \int\limits_{0}^{pdg_{2523}} \left(\frac{pdg_{9199}}{2} - \frac{\int\limits_{0}^{pdg_{2523}} \cos{\left(\frac{2 pdg_{1592} pdg_{3141} pdg_{4037}}{pdg_{2523}} \right)}\, dpdg_{4037}}{2}\right)\, dpdg_{4037}\)
no check performed 9858028950:
1202310110:
9858028950:
1202310110:
particle in a 1D box normalization condition
  1. 1934748140; locally 7575626:
    \(\int |\psi(x)|^2 dx = 1\)
    \(\int \left|{\operatorname{pdg}_{9489}{\left(pdg_{1464} \right)}}\right|^{2}\, dpdg_{9199} = 1\)
no validation is available for assumptions 1934748140:
1934748140:
particle in a 1D box substitute LHS of expr 1 into expr 2
  1. 2944838499; locally 3452131:
    \(\psi(x) = a \sin(\frac{n \pi}{W} x)\)
    \(\operatorname{pdg}_{9489}{\left(pdg_{1464} \right)} = pdg_{9139} \sin{\left(\frac{pdg_{1592} pdg_{3141} pdg_{4037}}{pdg_{2523}} \right)}\)
  2. 4857472413; locally 0595847:
    \(1 = \int \psi(x)\psi(x)^* dx\)
    \(pdg_{9199}\)
  1. 0203024440; locally 0495950:
    \(1 = \int_0^W a \sin\left(\frac{n \pi}{W} x\right) \psi(x)^* dx\)
    \(1 = \int\limits_{0}^{pdg_{2523}} pdg_{9139} \sin{\left(\frac{pdg_{1464} pdg_{1592} pdg_{3141}}{pdg_{2523}} \right)} \overline{\operatorname{pdg}_{9489}{\left(pdg_{1464} \right)}}\, dpdg_{1464}\)
Nothing to split 2944838499:
4857472413:
0203024440:
2944838499:
4857472413:
0203024440:
particle in a 1D box change variable X to Y
  1. 0948572140; locally 3992939:
    \(\int \cos(a x) dx = \frac{1}{a}\sin(a x)\)
    \(\int \cos{\left(pdg_{1464} pdg_{9139} \right)}\, dpdg_{9199} = \frac{\sin{\left(pdg_{1464} pdg_{9139} \right)}}{pdg_{9139}}\)
  1. 0009485858:
    \(\frac{2n\pi}{W}\)
    \(\frac{2 pdg_{1592} pdg_{3141}}{pdg_{2523}}\)
  2. 0004831494:
    \(a\)
    \(pdg_{9139}\)
  1. 7564894985; locally 4948377:
    \(\int \cos\left(\frac{2n\pi}{W} x\right) dx = \frac{W}{2n\pi}\sin\left(\frac{2n\pi}{W} x\right)\)
    \(\int \cos{\left(\frac{2 pdg_{1592} pdg_{3141} pdg_{4037}}{pdg_{2523}} \right)}\, dpdg_{4037} = \frac{pdg_{2523} \sin{\left(\frac{2 pdg_{1592} pdg_{3141} pdg_{4037}}{pdg_{2523}} \right)}}{2 pdg_{1592} pdg_{3141}}\)
LHS diff is pdg9199*cos(pdg1464*pdg9139) - Piecewise((pdg2523*sin(2*pdg1592*pdg3141*pdg4037/pdg2523)/(2*pdg1592*pdg3141), Ne(pdg1592*pdg3141/pdg2523, 0)), (pdg4037, True)) RHS diff is sin(pdg1464*pdg9139)/pdg9139 - pdg2523*sin(2*pdg1592*pdg3141*pdg4037/pdg2523)/(2*pdg1592*pdg3141) 0948572140:
7564894985:
0948572140:
7564894985:
particle in a 1D box swap LHS with RHS
  1. 1934748140; locally 7575626:
    \(\int |\psi(x)|^2 dx = 1\)
    \(\int \left|{\operatorname{pdg}_{9489}{\left(pdg_{1464} \right)}}\right|^{2}\, dpdg_{9199} = 1\)
  1. 8572657110; locally 5577567:
    \(1 = \int |\psi(x)|^2 dx\)
    \(1 = \int \left|{\operatorname{pdg}_{9489}{\left(pdg_{1464} \right)}}\right|^{2}\, dpdg_{1464}\)
LHS diff is pdg9199*Abs(pdg9489(pdg1464))**2 - Integral(Abs(pdg9489(pdg1464))**2, pdg1464) RHS diff is pdg9199*Abs(pdg9489(pdg1464))**2 - Integral(Abs(pdg9489(pdg1464))**2, pdg1464) 1934748140:
8572657110:
1934748140:
8572657110:
particle in a 1D box substitute RHS of expr 1 into expr 2
  1. 5727578862; locally 7572748:
    \(\frac{d^2}{dx^2} \psi(x) = -k^2 \psi(x)\)
    \(pdg_{9199}\)
  2. 8582885111; locally 7572118:
    \(\psi(x) = a \sin(kx) + b \cos(kx)\)
    \(\operatorname{pdg}_{9489}{\left(pdg_{4037} \right)} = pdg_{1939} \cos{\left(pdg_{4037} pdg_{5321} \right)} + pdg_{9139} \sin{\left(pdg_{4037} pdg_{5321} \right)}\)
  1. 8575748999; locally 2838288:
    \(\frac{d^2}{dx^2} \left(a \sin(k x) + b \cos(k x) \right) = -k^2 \left(a \sin(kx) + b \cos(kx) \right)\)
    \(\frac{d^{2} \left(pdg_{1939} \cos{\left(pdg_{1464} pdg_{5321} \right)} + pdg_{9139} \sin{\left(pdg_{1464} pdg_{5321} \right)}\right)}{pdg_{9199}^{2}} = - pdg_{5321}^{2} \left(pdg_{1939} \cos{\left(pdg_{1464} pdg_{5321} \right)} + pdg_{9139} \sin{\left(pdg_{1464} pdg_{5321} \right)}\right)\)
Nothing to split 5727578862:
8582885111:
8575748999:
5727578862:
8582885111:
8575748999:
particle in a 1D box substitute LHS of expr 1 into expr 2
  1. 8849289982; locally 3452132:
    \(\psi(x)^* = a \sin(\frac{n \pi}{W} x)\)
    \(\overline{\operatorname{pdg}_{9489}{\left(pdg_{4037} \right)}} = pdg_{9139} \sin{\left(\frac{pdg_{1592} pdg_{3141} pdg_{4037}}{pdg_{2523}} \right)}\)
  2. 0203024440; locally 0495950:
    \(1 = \int_0^W a \sin\left(\frac{n \pi}{W} x\right) \psi(x)^* dx\)
    \(1 = \int\limits_{0}^{pdg_{2523}} pdg_{9139} \sin{\left(\frac{pdg_{1464} pdg_{1592} pdg_{3141}}{pdg_{2523}} \right)} \overline{\operatorname{pdg}_{9489}{\left(pdg_{1464} \right)}}\, dpdg_{1464}\)
  1. 8889444440; locally 8478550:
    \(1 = \int_0^W a^2 \left(\sin\left(\frac{n \pi}{W} x\right) \right)^2 dx\)
    \(1 = \int\limits_{0}^{pdg_{2523}} pdg_{9139}^{2} \sin^{2}{\left(\frac{pdg_{1464} pdg_{1592} pdg_{3141}}{pdg_{2523}} \right)}\, dpdg_{1464}\)
LHS diff is 0 RHS diff is pdg9139*(-pdg9139*Piecewise((pdg2523*(pdg1592*pdg3141/2 - sin(pdg1592*pdg3141)*cos(pdg1592*pdg3141)/2)/(pdg1592*pdg3141), Ne(pdg1592*pdg3141/pdg2523, 0)), (0, True)) + Integral(sin(pdg1464*pdg1592*pdg3141/pdg2523)*conjugate(pdg9489(pdg1464)), (pdg1464, 0, pdg2523))) 8849289982:
0203024440:
8889444440:
8849289982:
0203024440:
8889444440:
particle in a 1D box conjugate function X
  1. 2944838499; locally 3452131:
    \(\psi(x) = a \sin(\frac{n \pi}{W} x)\)
    \(\operatorname{pdg}_{9489}{\left(pdg_{1464} \right)} = pdg_{9139} \sin{\left(\frac{pdg_{1592} pdg_{3141} pdg_{4037}}{pdg_{2523}} \right)}\)
  1. 0009587738:
    \(\psi\)
    \(pdg_{9489}\)
  1. 8849289982; locally 3452132:
    \(\psi(x)^* = a \sin(\frac{n \pi}{W} x)\)
    \(\overline{\operatorname{pdg}_{9489}{\left(pdg_{4037} \right)}} = pdg_{9139} \sin{\left(\frac{pdg_{1592} pdg_{3141} pdg_{4037}}{pdg_{2523}} \right)}\)
no check performed 2944838499:
8849289982:
2944838499:
8849289982:
particle in a 1D box multiply both sides by
  1. 4857475848; locally 9493949:
    \(\frac{1}{a^2} = \frac{W}{2}\)
    \(\frac{1}{pdg_{9139}^{2}} = \frac{pdg_{2523}}{2}\)
  1. 0009485857:
    \(a^2\frac{2}{W}\)
    \(\frac{2 pdg_{9139}^{2}}{pdg_{2523}}\)
  1. 8485867742; locally 1029384:
    \(\frac{2}{W} = a^2\)
    \(\frac{2}{pdg_{2523}} = pdg_{9139}^{2}\)
valid 4857475848:
8485867742:
4857475848:
8485867742:
particle in a 1D box divide both sides by
  1. 8576785890; locally 9485800:
    \(1 = \int_0^W a^2 \frac{1-\cos\left(2\frac{n \pi}{W}x\right)}{2} dx\)
    \(1 = \int\limits_{0}^{pdg_{2523}} pdg_{9139}^{2} \left(\frac{1}{2} - \frac{\cos{\left(\frac{2 pdg_{1464} pdg_{1592} pdg_{3141}}{pdg_{2523}} \right)}}{2}\right)\, dpdg_{1464}\)
  1. 0000040490:
    \(a^2\)
    \(pdg_{9139}^{2}\)
  1. 9858028950; locally 0495054:
    \(\frac{1}{a^2} = \int_0^W \frac{1-\cos\left(2\frac{n \pi}{W}x\right)}{2} dx\)
    \(\frac{1}{pdg_{9139}^{2}} = \int\limits_{0}^{pdg_{2523}} \left(\frac{1}{2} - \frac{\cos{\left(\frac{2 pdg_{1464} pdg_{1592} pdg_{3141}}{pdg_{2523}} \right)}}{2}\right)\, dpdg_{1464}\)
valid 8576785890:
9858028950:
8576785890:
9858028950:
particle in a 1D box claim LHS equals RHS
  1. 8484544728; locally 1214762:
    \(-a k^2\sin(k x) + -b k^2\cos(k x) = -a k^2 \sin(kx) + -b k^2 \cos(k x)\)
    \(pdg_{4037}\)
Nothing to split 8484544728:
8484544728:
particle in a 1D box expand magnitude to conjugate
  1. 8572657110; locally 5577567:
    \(1 = \int |\psi(x)|^2 dx\)
    \(1 = \int \left|{\operatorname{pdg}_{9489}{\left(pdg_{1464} \right)}}\right|^{2}\, dpdg_{1464}\)
  1. 0009458842:
    \(\psi(x)\)
    \(\operatorname{pdg}_{9489}{\left(pdg_{1464} \right)}\)
  1. 4857472413; locally 0595847:
    \(1 = \int \psi(x)\psi(x)^* dx\)
    \(pdg_{9199}\)
Nothing to split 8572657110:
4857472413:
8572657110:
4857472413:
particle in a 1D box declare final expr
  1. 9393939992; locally 8474765:
    \(\psi(x) = \sqrt{\frac{2}{W}} \sin\left(\frac{n \pi}{W} x\right)\)
    \(\operatorname{pdg}_{9489}{\left(pdg_{1464} \right)} = \sqrt{2} \sqrt{\frac{1}{pdg_{2523}}} \sin{\left(\frac{pdg_{1464} pdg_{1592} pdg_{3141}}{pdg_{2523}} \right)}\)
no validation is available for declarations 9393939992:
9393939992:
particle in a 1D box simplify
  1. 0439492440; locally 0405049:
    \(\frac{1}{a^2} = \frac{1}{2}W - \frac{1}{2}\left. \frac{W}{2n\pi}\sin\left(\frac{2n\pi}{W} x\right) \right|_0^W\)
    \(\frac{1}{pdg_{9139}^{2}} = \frac{pdg_{2523}}{2} - \frac{pdg_{2523} \sin{\left(\frac{2 pdg_{1592} pdg_{3141} pdg_{4037}}{pdg_{2523}} \right)}}{4 pdg_{1592} pdg_{3141}}\)
  1. 4857475848; locally 9493949:
    \(\frac{1}{a^2} = \frac{W}{2}\)
    \(\frac{1}{pdg_{9139}^{2}} = \frac{pdg_{2523}}{2}\)
LHS diff is 0 RHS diff is -pdg2523*sin(2*pdg1592*pdg3141*pdg4037/pdg2523)/(4*pdg1592*pdg3141) 0439492440:
4857475848:
0439492440:
4857475848:
particle in a 1D box declare identity
  1. 9988949211; locally 1231131:
    \((\sin(x))^2 = \frac{1 - \cos(2 x)}{2}\)
    \(\sin^{2}{\left(pdg_{1464} \right)} = \frac{1}{2} - \frac{\cos{\left(2 pdg_{1464} \right)}}{2}\)
no validation is available for declarations 9988949211:
9988949211:
particle in a 1D box substitute RHS of expr 1 into expr 2
  1. 7564894985; locally 4948377:
    \(\int \cos\left(\frac{2n\pi}{W} x\right) dx = \frac{W}{2n\pi}\sin\left(\frac{2n\pi}{W} x\right)\)
    \(\int \cos{\left(\frac{2 pdg_{1592} pdg_{3141} pdg_{4037}}{pdg_{2523}} \right)}\, dpdg_{4037} = \frac{pdg_{2523} \sin{\left(\frac{2 pdg_{1592} pdg_{3141} pdg_{4037}}{pdg_{2523}} \right)}}{2 pdg_{1592} pdg_{3141}}\)
  2. 1202312210; locally 8584733:
    \(\frac{1}{a^2} = \frac{1}{2}W - \frac{1}{2} \int_0^W \cos\left(2\frac{n \pi}{W}x\right) dx\)
    \(\frac{1}{pdg_{9139}^{2}} = \frac{pdg_{2523}}{2} - \frac{\int\limits_{0}^{pdg_{2523}} \cos{\left(\frac{2 pdg_{1592} pdg_{3141} pdg_{4037}}{pdg_{2523}} \right)}\, dpdg_{4037}}{2}\)
  1. 0439492440; locally 0405049:
    \(\frac{1}{a^2} = \frac{1}{2}W - \frac{1}{2}\left. \frac{W}{2n\pi}\sin\left(\frac{2n\pi}{W} x\right) \right|_0^W\)
    \(\frac{1}{pdg_{9139}^{2}} = \frac{pdg_{2523}}{2} - \frac{pdg_{2523} \sin{\left(\frac{2 pdg_{1592} pdg_{3141} pdg_{4037}}{pdg_{2523}} \right)}}{4 pdg_{1592} pdg_{3141}}\)
LHS diff is 0 RHS diff is -Piecewise((pdg2523*sin(2*pdg1592*pdg3141)/(2*pdg1592*pdg3141), Ne(pdg1592*pdg3141/pdg2523, 0)), (pdg2523, True))/2 + pdg2523*sin(2*pdg1592*pdg3141*pdg4037/pdg2523)/(4*pdg1592*pdg3141) 7564894985:
1202312210:
0439492440:
7564894985:
1202312210:
0439492440:
particle in a 1D box LHS of expr 1 equals LHS of expr 2
  1. 9585727710; locally 8577781:
    \(\psi(x=0) = 0\)
    \(\operatorname{pdg}_{9489}{\left(pdg_{1464} = 0 \right)} = 0\)
  2. 8582885111; locally 7572118:
    \(\psi(x) = a \sin(kx) + b \cos(kx)\)
    \(\operatorname{pdg}_{9489}{\left(pdg_{4037} \right)} = pdg_{1939} \cos{\left(pdg_{4037} pdg_{5321} \right)} + pdg_{9139} \sin{\left(pdg_{4037} pdg_{5321} \right)}\)
  1. 8577275751; locally 7547581:
    \(0 = a \sin(0) + b\cos(0)\)
    \(0 = pdg_{1939}\)
input diff is -pdg9489(pdg4037) + pdg9489(Eq(pdg1464, 0)) diff is 0 diff is -pdg1939*cos(pdg4037*pdg5321) + pdg1939 - pdg9139*sin(pdg4037*pdg5321) 9585727710:
8582885111:
8577275751:
9585727710:
8582885111:
8577275751:
particle in a 1D box substitute RHS of expr 1 into expr 2
  1. 1293913110; locally 7572859:
    \(0 = b\)
    \(0 = pdg_{1939}\)
  2. 8582885111; locally 7572118:
    \(\psi(x) = a \sin(kx) + b \cos(kx)\)
    \(\operatorname{pdg}_{9489}{\left(pdg_{4037} \right)} = pdg_{1939} \cos{\left(pdg_{4037} pdg_{5321} \right)} + pdg_{9139} \sin{\left(pdg_{4037} pdg_{5321} \right)}\)
  1. 9059289981; locally 7562671:
    \(\psi(x) = a \sin(k x)\)
    \(pdg_{1464}\)
Nothing to split 1293913110:
8582885111:
9059289981:
1293913110:
8582885111:
9059289981:
particle in a 1D box boundary condition for expr
  1. 5727578862; locally 7572748:
    \(\frac{d^2}{dx^2} \psi(x) = -k^2 \psi(x)\)
    \(pdg_{9199}\)
  1. 9585727710; locally 8577781:
    \(\psi(x=0) = 0\)
    \(\operatorname{pdg}_{9489}{\left(pdg_{1464} = 0 \right)} = 0\)
no validation is available for assumptions 5727578862:
9585727710:
5727578862:
9585727710:
particle in a 1D box boundary condition for expr
  1. 5727578862; locally 7572748:
    \(\frac{d^2}{dx^2} \psi(x) = -k^2 \psi(x)\)
    \(pdg_{9199}\)
  1. 9495857278; locally 8585727:
    \(\psi(x=W) = 0\)
    \(pdg_{2523}\)
no validation is available for assumptions 5727578862:
9495857278:
5727578862:
9495857278:
particle in a 1D box expr 1 is true under condition expr 2
  1. 1020010291; locally 8577672:
    \(0 = a \sin(k W)\)
    \(0 = pdg_{9139} \sin{\left(pdg_{2523} pdg_{5321} \right)}\)
  2. 1857710291; locally 8577711:
    \(0 = a \sin(n \pi)\)
    \(0 = pdg_{9139} \sin{\left(pdg_{1592} pdg_{3141} \right)}\)
  1. 1010923823; locally 9847600:
    \(k W = n \pi\)
    \(pdg_{2523} pdg_{5321} = pdg_{1592} pdg_{3141}\)
no check performed 1020010291:
1857710291:
1010923823:
1020010291:
1857710291:
1010923823:
particle in a 1D box declare identity
  1. 1857710291; locally 8577711:
    \(0 = a \sin(n \pi)\)
    \(0 = pdg_{9139} \sin{\left(pdg_{1592} pdg_{3141} \right)}\)
no validation is available for declarations 1857710291:
1857710291:
particle in a 1D box substitute RHS of expr 1 into expr 2
  1. 1858772113; locally 9495882:
    \(k = \frac{n \pi}{W}\)
    \(pdg_{5321} = \frac{pdg_{1592} pdg_{3141}}{pdg_{2523}}\)
  2. 9059289981; locally 7562671:
    \(\psi(x) = a \sin(k x)\)
    \(pdg_{1464}\)
  1. 2944838499; locally 3452131:
    \(\psi(x) = a \sin(\frac{n \pi}{W} x)\)
    \(\operatorname{pdg}_{9489}{\left(pdg_{1464} \right)} = pdg_{9139} \sin{\left(\frac{pdg_{1592} pdg_{3141} pdg_{4037}}{pdg_{2523}} \right)}\)
Nothing to split 1858772113:
9059289981:
2944838499:
1858772113:
9059289981:
2944838499:
particle in a 1D box simplify
  1. 8577275751; locally 7547581:
    \(0 = a \sin(0) + b\cos(0)\)
    \(0 = pdg_{1939}\)
  1. 1293913110; locally 7572859:
    \(0 = b\)
    \(0 = pdg_{1939}\)
valid 8577275751:
1293913110:
8577275751:
1293913110:
particle in a 1D box declare initial expr
  1. 5727578862; locally 7572748:
    \(\frac{d^2}{dx^2} \psi(x) = -k^2 \psi(x)\)
    \(pdg_{9199}\)
no validation is available for declarations 5727578862:
5727578862:
particle in a 1D box substitute RHS of expr 1 into expr 2
  1. 7575738420; locally 0100404:
    \(\left(\sin\left(\frac{n \pi}{W}x\right) \right)^2 = \frac{1-\cos\left(2\frac{n \pi}{W}x\right)}{2}\)
    \(\sin^{2}{\left(\frac{pdg_{1592} pdg_{3141} pdg_{4037}}{pdg_{2523}} \right)} = \frac{1}{2} - \frac{\cos{\left(\frac{2 pdg_{1464} pdg_{1592} pdg_{3141}}{pdg_{2523}} \right)}}{2}\)
  2. 8889444440; locally 8478550:
    \(1 = \int_0^W a^2 \left(\sin\left(\frac{n \pi}{W} x\right) \right)^2 dx\)
    \(1 = \int\limits_{0}^{pdg_{2523}} pdg_{9139}^{2} \sin^{2}{\left(\frac{pdg_{1464} pdg_{1592} pdg_{3141}}{pdg_{2523}} \right)}\, dpdg_{1464}\)
  1. 8576785890; locally 9485800:
    \(1 = \int_0^W a^2 \frac{1-\cos\left(2\frac{n \pi}{W}x\right)}{2} dx\)
    \(1 = \int\limits_{0}^{pdg_{2523}} pdg_{9139}^{2} \left(\frac{1}{2} - \frac{\cos{\left(\frac{2 pdg_{1464} pdg_{1592} pdg_{3141}}{pdg_{2523}} \right)}}{2}\right)\, dpdg_{1464}\)
valid 7575738420:
8889444440:
8576785890:
7575738420:
8889444440:
8576785890:
particle in a 1D box divide both sides by
  1. 1010923823; locally 9847600:
    \(k W = n \pi\)
    \(pdg_{2523} pdg_{5321} = pdg_{1592} pdg_{3141}\)
  1. 0001334112:
    \(W\)
    \(pdg_{2523}\)
  1. 1858772113; locally 9495882:
    \(k = \frac{n \pi}{W}\)
    \(pdg_{5321} = \frac{pdg_{1592} pdg_{3141}}{pdg_{2523}}\)
valid 1010923823:
1858772113:
1010923823:
1858772113:
particle in a 1D box simplify
  1. 8485757728; locally 8474762:
    \(a \frac{d^2}{dx^2}\sin(kx) + b \frac{d^2}{dx^2}\cos(k x) = -a k^2 \sin(kx) + -b k^2 \cos(kx)\)
    \(pdg_{9199}\)
  1. 8484544728; locally 1214762:
    \(-a k^2\sin(k x) + -b k^2\cos(k x) = -a k^2 \sin(kx) + -b k^2 \cos(k x)\)
    \(pdg_{4037}\)
Nothing to split 8485757728:
8484544728:
8485757728:
8484544728:
particle in a 1D box LHS of expr 1 equals LHS of expr 2
  1. 9495857278; locally 8585727:
    \(\psi(x=W) = 0\)
    \(pdg_{2523}\)
  2. 9059289981; locally 7562671:
    \(\psi(x) = a \sin(k x)\)
    \(pdg_{1464}\)
  1. 1020010291; locally 8577672:
    \(0 = a \sin(k W)\)
    \(0 = pdg_{9139} \sin{\left(pdg_{2523} pdg_{5321} \right)}\)
Nothing to split 9495857278:
9059289981:
1020010291:
9495857278:
9059289981:
1020010291:
quadratic equation derivation subtract X from both sides
  1. 5982958249; locally 6608123:
    \(x+(b/(2 a)) = -\sqrt{(b/(2 a))^2 - (c/a)}\)
    \(pdg_{1464} + \frac{pdg_{1939}}{2 pdg_{9139}} = - \sqrt{\frac{pdg_{1939}^{2}}{4 pdg_{9139}^{2}} - \frac{pdg_{4231}}{pdg_{9139}}}\)
  1. 0002838490:
    \(b/(2 a)\)
    \(\frac{pdg_{1939}}{2 pdg_{9139}}\)
  1. 9582958293; locally 4433112:
    \(x = \sqrt{(b/(2 a))^2 - (c/a)}-(b/(2 a))\)
    \(pdg_{1464} = - \frac{pdg_{1939}}{2 pdg_{9139}} + \sqrt{\frac{pdg_{1939}^{2}}{4 pdg_{9139}^{2}} - \frac{pdg_{4231}}{pdg_{9139}}}\)
LHS diff is 0 RHS diff is -sqrt((pdg1939**2 - 4*pdg4231*pdg9139)/pdg9139**2) 5982958249:
9582958293:
5982958249:
9582958293:
quadratic equation derivation subtract X from both sides
  1. 9582958294; locally 6608102:
    \(x+(b/(2 a)) = \sqrt{(b/(2 a))^2 - (c/a)}\)
    \(pdg_{1464} + \frac{pdg_{1939}}{2 pdg_{9139}} = \sqrt{\frac{pdg_{1939}^{2}}{4 pdg_{9139}^{2}} - \frac{pdg_{4231}}{pdg_{9139}}}\)
  1. 0002449291:
    \(b/(2 a)\)
    \(\frac{pdg_{1939}}{2 pdg_{9139}}\)
  1. 5982958248; locally 2657355:
    \(x = -\sqrt{(b/(2 a))^2 - (c/a)}-(b/(2 a))\)
    \(pdg_{1464} = - \frac{pdg_{1939}}{2 pdg_{9139}} - \sqrt{\frac{pdg_{1939}^{2}}{4 pdg_{9139}^{2}} - \frac{pdg_{4231}}{pdg_{9139}}}\)
LHS diff is 0 RHS diff is sqrt((pdg1939**2 - 4*pdg4231*pdg9139)/pdg9139**2) 9582958294:
5982958248:
9582958294:
5982958248:
quadratic equation derivation simplify
  1. 5982958248; locally 2657355:
    \(x = -\sqrt{(b/(2 a))^2 - (c/a)}-(b/(2 a))\)
    \(pdg_{1464} = - \frac{pdg_{1939}}{2 pdg_{9139}} - \sqrt{\frac{pdg_{1939}^{2}}{4 pdg_{9139}^{2}} - \frac{pdg_{4231}}{pdg_{9139}}}\)
  1. 9999999968; locally 8811221:
    \(x = \frac{-b-\sqrt{b^2-4ac}}{2 a}\)
    \(pdg_{1464} = \frac{- pdg_{1939} - \sqrt{pdg_{1939}^{2} - 4 pdg_{4231} pdg_{9139}}}{2 pdg_{9139}}\)
LHS diff is 0 RHS diff is (-pdg9139*sqrt((pdg1939**2 - 4*pdg4231*pdg9139)/pdg9139**2) + sqrt(pdg1939**2 - 4*pdg4231*pdg9139))/(2*pdg9139) 5982958248:
9999999968:
5982958248:
9999999968:
quadratic equation derivation simplify
  1. 9582958293; locally 4433112:
    \(x = \sqrt{(b/(2 a))^2 - (c/a)}-(b/(2 a))\)
    \(pdg_{1464} = - \frac{pdg_{1939}}{2 pdg_{9139}} + \sqrt{\frac{pdg_{1939}^{2}}{4 pdg_{9139}^{2}} - \frac{pdg_{4231}}{pdg_{9139}}}\)
  1. 9999999969; locally 8761200:
    \(x = \frac{-b+\sqrt{b^2-4ac}}{2 a}\)
    \(pdg_{1464} = \frac{- pdg_{1939} + \sqrt{pdg_{1939}^{2} - 4 pdg_{4231} pdg_{9139}}}{2 pdg_{9139}}\)
LHS diff is 0 RHS diff is (pdg9139*sqrt((pdg1939**2 - 4*pdg4231*pdg9139)/pdg9139**2) - sqrt(pdg1939**2 - 4*pdg4231*pdg9139))/(2*pdg9139) 9582958293:
9999999969:
9582958293:
9999999969:
quadratic equation derivation add X to both sides
  1. 5938459282; locally 1212129:
    \(x^2 + (b/a)x = -c/a\)
    \(pdg_{1464}^{2} + \frac{pdg_{1464} pdg_{1939}}{pdg_{9139}} = - \frac{pdg_{4231}}{pdg_{9139}}\)
  1. 0004307451:
    \((b/(2 a))^2\)
    \(\frac{pdg_{1939}^{2}}{4 pdg_{9139}^{2}}\)
  1. 5928292841; locally 1120000:
    \(x^2 + (b/a)x + (b/(2 a))^2 = -c/a + (b/(2 a))^2\)
    \(pdg_{1464}^{2} + \frac{pdg_{1464} pdg_{1939}}{pdg_{9139}} + \frac{pdg_{1939}^{2}}{4 pdg_{9139}^{2}} = \frac{pdg_{1939}^{2}}{4 pdg_{9139}^{2}} - \frac{pdg_{4231}}{pdg_{9139}}\)
valid 5938459282:
5928292841:
5938459282:
5928292841:
quadratic equation derivation subtract X from both sides
  1. 5958392859; locally 7777621:
    \(x^2 + (b/a)x+(c/a) = 0\)
    \(pdg_{1464}^{2} + pdg_{1464} + \frac{pdg_{4231}}{pdg_{9139}} = 0\)
  1. 0006644853:
    \(c/a\)
    \(\frac{pdg_{4231}}{pdg_{9139}}\)
  1. 5938459282; locally 1212129:
    \(x^2 + (b/a)x = -c/a\)
    \(pdg_{1464}^{2} + \frac{pdg_{1464} pdg_{1939}}{pdg_{9139}} = - \frac{pdg_{4231}}{pdg_{9139}}\)
LHS diff is pdg1464*(-pdg1939 + pdg9139)/pdg9139 RHS diff is 0 5958392859:
5938459282:
5958392859:
5938459282:
quadratic equation derivation square root both sides
  1. 9385938295; locally 2985412:
    \((x+(b/(2 a)))^2 = -(c/a) + (b/(2 a))^2\)
    \(\left(pdg_{1464} + \frac{pdg_{1939}}{2 pdg_{9139}}\right)^{2} = \frac{pdg_{1939}^{2}}{4 pdg_{9139}^{2}} - \frac{pdg_{4231}}{pdg_{9139}}\)
  1. 5982958249; locally 6608123:
    \(x+(b/(2 a)) = -\sqrt{(b/(2 a))^2 - (c/a)}\)
    \(pdg_{1464} + \frac{pdg_{1939}}{2 pdg_{9139}} = - \sqrt{\frac{pdg_{1939}^{2}}{4 pdg_{9139}^{2}} - \frac{pdg_{4231}}{pdg_{9139}}}\)
  2. 9582958294; locally 6608102:
    \(x+(b/(2 a)) = \sqrt{(b/(2 a))^2 - (c/a)}\)
    \(pdg_{1464} + \frac{pdg_{1939}}{2 pdg_{9139}} = \sqrt{\frac{pdg_{1939}^{2}}{4 pdg_{9139}^{2}} - \frac{pdg_{4231}}{pdg_{9139}}}\)
no check performed 9385938295:
5982958249:
9582958294:
9385938295:
5982958249:
9582958294:
quadratic equation derivation LHS of expr 1 equals LHS of expr 2
  1. 5928292841; locally 1120000:
    \(x^2 + (b/a)x + (b/(2 a))^2 = -c/a + (b/(2 a))^2\)
    \(pdg_{1464}^{2} + \frac{pdg_{1464} pdg_{1939}}{pdg_{9139}} + \frac{pdg_{1939}^{2}}{4 pdg_{9139}^{2}} = \frac{pdg_{1939}^{2}}{4 pdg_{9139}^{2}} - \frac{pdg_{4231}}{pdg_{9139}}\)
  2. 5959282914; locally 1734000:
    \(x^2 + x(b/a) + (b/(2 a))^2 = (x+(b/(2 a)))^2\)
    \(pdg_{1464}^{2} + \frac{pdg_{1464} pdg_{1939}}{pdg_{9139}} + \frac{pdg_{1939}^{2}}{4 pdg_{9139}^{2}} = \left(pdg_{1464} + \frac{pdg_{1939}}{2 pdg_{9139}}\right)^{2}\)
  1. 9385938295; locally 2985412:
    \((x+(b/(2 a)))^2 = -(c/a) + (b/(2 a))^2\)
    \(\left(pdg_{1464} + \frac{pdg_{1939}}{2 pdg_{9139}}\right)^{2} = \frac{pdg_{1939}^{2}}{4 pdg_{9139}^{2}} - \frac{pdg_{4231}}{pdg_{9139}}\)
input diff is 0 diff is (pdg1464**2*pdg9139 + pdg1464*pdg1939 + pdg4231)/pdg9139 diff is (-pdg1464**2*pdg9139 - pdg1464*pdg1939 - pdg4231)/pdg9139 5928292841:
5959282914:
9385938295:
5928292841:
5959282914:
9385938295:
quadratic equation derivation simplify
  1. 5928285821; locally 1239010:
    \(x^2 + 2 x (b/(2 a)) + (b/(2 a))^2 = (x + (b/(2 a)))^2\)
    \(pdg_{1464}^{2} + \frac{pdg_{1464} pdg_{1939}}{pdg_{9139}} + \frac{pdg_{1939}^{2}}{4 pdg_{9139}^{2}} = \left(pdg_{1464} + \frac{pdg_{1939}}{2 pdg_{9139}}\right)^{2}\)
  1. 5959282914; locally 1734000:
    \(x^2 + x(b/a) + (b/(2 a))^2 = (x+(b/(2 a)))^2\)
    \(pdg_{1464}^{2} + \frac{pdg_{1464} pdg_{1939}}{pdg_{9139}} + \frac{pdg_{1939}^{2}}{4 pdg_{9139}^{2}} = \left(pdg_{1464} + \frac{pdg_{1939}}{2 pdg_{9139}}\right)^{2}\)
valid 5928285821:
5959282914:
5928285821:
5959282914:
quadratic equation derivation change variable X to Y
  1. 8582954722; locally 9091270:
    \(x^2 + 2 x h + h^2 = (x + h)^2\)
    \(pdg_{1464}^{2} + 2 pdg_{1464} pdg_{3410} + pdg_{3410}^{2} = \left(pdg_{1464} + pdg_{3410}\right)^{2}\)
  1. 0004858592:
    \(h\)
    \(pdg_{3410}\)
  2. 0000999900:
    \(b/(2 a)\)
    \(\frac{pdg_{1939}}{2 pdg_{9139}}\)
  1. 5928285821; locally 1239010:
    \(x^2 + 2 x (b/(2 a)) + (b/(2 a))^2 = (x + (b/(2 a)))^2\)
    \(pdg_{1464}^{2} + \frac{pdg_{1464} pdg_{1939}}{pdg_{9139}} + \frac{pdg_{1939}^{2}}{4 pdg_{9139}^{2}} = \left(pdg_{1464} + \frac{pdg_{1939}}{2 pdg_{9139}}\right)^{2}\)
valid 8582954722:
5928285821:
8582954722:
5928285821:
quadratic equation derivation declare final expr
  1. 9999999968; locally 8811221:
    \(x = \frac{-b-\sqrt{b^2-4ac}}{2 a}\)
    \(pdg_{1464} = \frac{- pdg_{1939} - \sqrt{pdg_{1939}^{2} - 4 pdg_{4231} pdg_{9139}}}{2 pdg_{9139}}\)
no validation is available for declarations 9999999968:
9999999968:
quadratic equation derivation declare final expr
  1. 9999999969; locally 8761200:
    \(x = \frac{-b+\sqrt{b^2-4ac}}{2 a}\)
    \(pdg_{1464} = \frac{- pdg_{1939} + \sqrt{pdg_{1939}^{2} - 4 pdg_{4231} pdg_{9139}}}{2 pdg_{9139}}\)
no validation is available for declarations 9999999969:
9999999969:
quadratic equation derivation divide both sides by
  1. 9285928292; locally 8882098:
    \(ax^2 + bx + c = 0\)
    \(pdg_{1464}^{2} pdg_{9139} + pdg_{1464} pdg_{1939} + pdg_{4231} = 0\)
  1. 0002424922:
    \(a\)
    \(pdg_{9139}\)
  1. 5958392859; locally 7777621:
    \(x^2 + (b/a)x+(c/a) = 0\)
    \(pdg_{1464}^{2} + pdg_{1464} + \frac{pdg_{4231}}{pdg_{9139}} = 0\)
LHS diff is pdg1464*(pdg1939 - pdg9139)/pdg9139 RHS diff is 0 9285928292:
5958392859:
9285928292:
5958392859:
quadratic equation derivation declare initial expr
  1. 9285928292; locally 8882098:
    \(ax^2 + bx + c = 0\)
    \(pdg_{1464}^{2} pdg_{9139} + pdg_{1464} pdg_{1939} + pdg_{4231} = 0\)
no validation is available for declarations 9285928292:
9285928292:
quadratic equation derivation declare initial expr
  1. 8582954722; locally 9091270:
    \(x^2 + 2 x h + h^2 = (x + h)^2\)
    \(pdg_{1464}^{2} + 2 pdg_{1464} pdg_{3410} + pdg_{3410}^{2} = \left(pdg_{1464} + pdg_{3410}\right)^{2}\)
no validation is available for declarations 8582954722:
8582954722:
quantum basics Hermitian operators have realvalued observables declare assumption
  1. 9294858532; locally 2484892:
    \(\hat{A}^+ = \hat{A}\)
    \(\)
no validation is available for declarations 9294858532:
9294858532:
quantum basics Hermitian operators have realvalued observables distribute conjugate transpose to factors
  1. 2394935835; locally 2495954:
    \(\left(\langle\psi| \hat{A} |\psi \rangle \right)^+ = \left(\langle a \rangle\right)^+\)
    \(\)
  1. 1010393913; locally 2390094:
    \(\langle \psi| \hat{A}^+ |\psi \rangle = \langle a \rangle^*\)
    \(\)
Nothing to split 2394935835:
1010393913:
2394935835:
1010393913:
quantum basics Hermitian operators have realvalued observables substitute RHS of expr 1 into expr 2
  1. 9294858532; locally 2484892:
    \(\hat{A}^+ = \hat{A}\)
    \(\)
  2. 1010393913; locally 2390094:
    \(\langle \psi| \hat{A}^+ |\psi \rangle = \langle a \rangle^*\)
    \(\)
  1. 4948934890; locally 2494040:
    \(\langle \psi| \hat{A} |\psi \rangle = \langle a \rangle^*\)
    \(\)
failed 9294858532:
1010393913:
4948934890:
9294858532:
1010393913:
4948934890:
quantum basics Hermitian operators have realvalued observables substitute RHS of expr 1 into expr 2
  1. 4948934890; locally 2494040:
    \(\langle \psi| \hat{A} |\psi \rangle = \langle a \rangle^*\)
    \(\)
  2. 9999999975; locally 3402919:
    \(\langle \psi| \hat{A} |\psi \rangle = \langle a \rangle\)
    \(\)
  1. 2848934890; locally 4930585:
    \(\langle a \rangle^* = \langle a \rangle\)
    \(\)
Nothing to split 4948934890:
9999999975:
2848934890:
4948934890:
9999999975:
2848934890:
quantum basics Hermitian operators have realvalued observables declare final expr
  1. 2848934890; locally 4930585:
    \(\langle a \rangle^* = \langle a \rangle\)
    \(\)
no validation is available for declarations 2848934890:
2848934890:
quantum basics Hermitian operators have realvalued observables declare initial expr
  1. 9999999975; locally 3402919:
    \(\langle \psi| \hat{A} |\psi \rangle = \langle a \rangle\)
    \(\)
no validation is available for declarations 9999999975:
9999999975:
quantum basics Hermitian operators have realvalued observables conjugate transpose both sides
  1. 9999999975; locally 3402919:
    \(\langle \psi| \hat{A} |\psi \rangle = \langle a \rangle\)
    \(\)
  1. 2394935835; locally 2495954:
    \(\left(\langle\psi| \hat{A} |\psi \rangle \right)^+ = \left(\langle a \rangle\right)^+\)
    \(\)
Nothing to split 9999999975:
2394935835:
9999999975:
2394935835:
quantum basics orthogonality apply operator to bra
  1. 9596004948; locally 3849595:
    \(x = \langle\psi_{\alpha}| \hat{A} |\psi_{\beta}\rangle\)
    \(pdg_{1464} = pdg_{5598} {\left\langle pdg_{4679}\right|} {\left|pdg_{2090}\right\rangle }\)
  1. 1395858355; locally 4349300:
    \(x = \langle \psi_{\alpha}| a_{\alpha} |\psi_{\beta}\rangle\)
    \(pdg_{1464} = pdg_{2427} {\left\langle pdg_{4679}\right|} {\left|pdg_{2090}\right\rangle }\)
no check performed 9596004948:
1395858355:
9596004948:
1395858355:
quantum basics orthogonality simplify
  1. 1010393944; locally 4940359:
    \(x = \langle\psi_{\alpha}| a_{\beta} |\psi_{\beta} \rangle\)
    \(pdg_{1464} = pdg_{7752} {\left\langle pdg_{4679}\right|} {\left|pdg_{2090}\right\rangle }\)
  1. 2394240499; locally 2409402:
    \(x = a_{\beta} \langle \psi_{\alpha} | \psi_{\beta} \rangle\)
    \(pdg_{1464} = pdg_{7752} {\left\langle pdg_{4679}\right|} {\left|pdg_{2090}\right\rangle }\)
valid 1010393944:
2394240499:
1010393944:
2394240499:
quantum basics orthogonality declare final expr
  1. 2394935831; locally 3494855:
    \(( a_{\beta} - a_{\alpha} ) \langle \psi_{\alpha} | \psi_{\beta} \rangle = 0\)
    \(\left(- pdg_{2427} + pdg_{7752}\right) {\left\langle pdg_{4679}\right|} {\left|pdg_{2090}\right\rangle } = 0\)
no validation is available for declarations 2394935831:
2394935831:
quantum basics orthogonality declare initial expr
  1. 9596004948; locally 3849595:
    \(x = \langle\psi_{\alpha}| \hat{A} |\psi_{\beta}\rangle\)
    \(pdg_{1464} = pdg_{5598} {\left\langle pdg_{4679}\right|} {\left|pdg_{2090}\right\rangle }\)
no validation is available for declarations 9596004948:
9596004948:
quantum basics orthogonality apply operator to ket
  1. 9596004948; locally 3849595:
    \(x = \langle\psi_{\alpha}| \hat{A} |\psi_{\beta}\rangle\)
    \(pdg_{1464} = pdg_{5598} {\left\langle pdg_{4679}\right|} {\left|pdg_{2090}\right\rangle }\)
  1. 1010393944; locally 4940359:
    \(x = \langle\psi_{\alpha}| a_{\beta} |\psi_{\beta} \rangle\)
    \(pdg_{1464} = pdg_{7752} {\left\langle pdg_{4679}\right|} {\left|pdg_{2090}\right\rangle }\)
no check performed 9596004948:
1010393944:
9596004948:
1010393944:
quantum basics orthogonality subtract X from both sides
  1. 1203938249; locally 3495045:
    \(a_{\beta} \langle \psi_{\alpha} | \psi_{\beta} \rangle = a_{\alpha} \langle \psi_{\alpha} | \psi_{\beta} \rangle\)
    \(\text{True}\)
  1. 0005395034:
    \(a_{\alpha} \langle \psi_{\alpha} | \psi_{\beta} \rangle\)
    \(pdg_{2427} {\left\langle pdg_{4679}\right|} {\left|pdg_{2090}\right\rangle }\)
  1. 3924948349; locally 4939583:
    \(a_{\beta} \langle \psi_{\alpha} | \psi_{\beta} \rangle - a_{\alpha} \langle \psi_{\alpha} | \psi_{\beta} \rangle = 0\)
    \(pdg_{7752}\)
failed 1203938249:
3924948349:
1203938249:
3924948349:
quantum basics orthogonality simplify
  1. 1395858355; locally 4349300:
    \(x = \langle \psi_{\alpha}| a_{\alpha} |\psi_{\beta}\rangle\)
    \(pdg_{1464} = pdg_{2427} {\left\langle pdg_{4679}\right|} {\left|pdg_{2090}\right\rangle }\)
  1. 3943939590; locally 4934893:
    \(x = a_{\alpha} \langle \psi_{\alpha}| \psi_{\beta}\rangle\)
    \(pdg_{2427}\)
Nothing to split 1395858355:
3943939590:
1395858355:
3943939590:
quantum basics orthogonality LHS of expr 1 equals LHS of expr 2
  1. 2394240499; locally 2409402:
    \(x = a_{\beta} \langle \psi_{\alpha} | \psi_{\beta} \rangle\)
    \(pdg_{1464} = pdg_{7752} {\left\langle pdg_{4679}\right|} {\left|pdg_{2090}\right\rangle }\)
  2. 3943939590; locally 4934893:
    \(x = a_{\alpha} \langle \psi_{\alpha}| \psi_{\beta}\rangle\)
    \(pdg_{2427}\)
  1. 1203938249; locally 3495045:
    \(a_{\beta} \langle \psi_{\alpha} | \psi_{\beta} \rangle = a_{\alpha} \langle \psi_{\alpha} | \psi_{\beta} \rangle\)
    \(\text{True}\)
Nothing to split 2394240499:
3943939590:
1203938249:
2394240499:
3943939590:
1203938249:
quantum basics orthogonality combine like terms
  1. 3924948349; locally 4939583:
    \(a_{\beta} \langle \psi_{\alpha} | \psi_{\beta} \rangle - a_{\alpha} \langle \psi_{\alpha} | \psi_{\beta} \rangle = 0\)
    \(pdg_{7752}\)
  1. 2394935831; locally 3494855:
    \(( a_{\beta} - a_{\alpha} ) \langle \psi_{\alpha} | \psi_{\beta} \rangle = 0\)
    \(\left(- pdg_{2427} + pdg_{7752}\right) {\left\langle pdg_{4679}\right|} {\left|pdg_{2090}\right\rangle } = 0\)
Nothing to split 3924948349:
2394935831:
3924948349:
2394935831:
variance relation declare identity
  1. 3585845894; locally 3493498:
    \(\langle \left(x-\langle x \rangle\right)^2 \rangle = \langle x^2 \rangle-\langle x \rangle^2\)
    \(pdg_{1464}\)
no validation is available for declarations 3585845894:
3585845894:
variance relation simplify
  1. 3585845894; locally 3493498:
    \(\langle \left(x-\langle x \rangle\right)^2 \rangle = \langle x^2 \rangle-\langle x \rangle^2\)
    \(pdg_{1464}\)
  1. 8399484849; locally 5049530:
    \(\langle x^2 - 2 x \langle x \rangle + \langle x \rangle^2 \rangle = \langle x^2 \rangle-\langle x \rangle^2\)
    \(pdg_{1464}\)
Nothing to split 3585845894:
8399484849:
3585845894:
8399484849:
variance relation simplify
  1. 8399484849; locally 5049530:
    \(\langle x^2 - 2 x \langle x \rangle + \langle x \rangle^2 \rangle = \langle x^2 \rangle-\langle x \rangle^2\)
    \(pdg_{1464}\)
  1. 2404934990; locally 6757584:
    \(\langle x^2\rangle -2\langle x \rangle\langle x \rangle+\langle x \rangle^2 = \langle x^2 \rangle-\langle x \rangle^2\)
    \(pdg_{1464}\)
Nothing to split 8399484849:
2404934990:
8399484849:
2404934990:
variance relation simplify
  1. 2404934990; locally 6757584:
    \(\langle x^2\rangle -2\langle x \rangle\langle x \rangle+\langle x \rangle^2 = \langle x^2 \rangle-\langle x \rangle^2\)
    \(pdg_{1464}\)
  1. 4949359835; locally 3294824:
    \(\langle x^2\rangle -2\langle x^2 \rangle+\langle x \rangle^2 = \langle x^2 \rangle-\langle x \rangle^2\)
    \(pdg_{1464}\)
Nothing to split 2404934990:
4949359835:
2404934990:
4949359835:
variance relation simplify
  1. 4949359835; locally 3294824:
    \(\langle x^2\rangle -2\langle x^2 \rangle+\langle x \rangle^2 = \langle x^2 \rangle-\langle x \rangle^2\)
    \(pdg_{1464}\)
  1. 2494533900; locally 5949484:
    \(\langle x^2\rangle -\langle x \rangle^2 = \langle x^2 \rangle-\langle x \rangle^2\)
    \(pdg_{1464}\)
Nothing to split 4949359835:
2494533900:
4949359835:
2494533900:
variance relation claim LHS equals RHS
  1. 2494533900; locally 5949484:
    \(\langle x^2\rangle -\langle x \rangle^2 = \langle x^2 \rangle-\langle x \rangle^2\)
    \(pdg_{1464}\)
Nothing to split 2494533900:
2494533900:
Compton's equation for scattering declare initial expr
  1. 8257621077; locally 2840008:
    \(\vec{p}_{\rm before} = \vec{p}_{1}\)
    \(pdg_{1302} = pdg_{6029}\)
no validation is available for declarations 8257621077:
8257621077:
Compton's equation for scattering substitute LHS of expr 1 into expr 2
  1. 3951205425; locally 2491904:
    \(\vec{p}_{\rm after} = \vec{p}_{1}\)
    \(pdg_{5493} = pdg_{6029}\)
  2. 8311458118; locally 1209604:
    \(\vec{p}_{\rm after} = \vec{p}_{2}+\vec{p}_{electron}\)
    \(pdg_{5493} = pdg_{2097} + pdg_{4299}\)
  1. 8139187332; locally 5610925:
    \(\vec{p}_{1} = \vec{p}_{2}+\vec{p}_{electron}\)
    \(pdg_{6029} = pdg_{2097} + pdg_{4299}\)
valid 3951205425:
8311458118:
8139187332:
3951205425:
8311458118:
8139187332:
Compton's equation for scattering swap LHS with RHS
  1. 5530148480; locally 4068150:
    \(\vec{p}_{1}-\vec{p}_{2} = \vec{p}_{electron}\)
    \(- pdg_{2097} + pdg_{6029} = pdg_{4299}\)
  1. 7917051060; locally 4200334:
    \(\vec{p}_{electron} = \vec{p}_{1}-\vec{p}_{2}\)
    \(pdg_{4299} = - pdg_{2097} + pdg_{6029}\)
valid 5530148480:
7917051060:
5530148480:
7917051060:
Compton's equation for scattering declare initial expr
  1. 8311458118; locally 1209604:
    \(\vec{p}_{\rm after} = \vec{p}_{2}+\vec{p}_{electron}\)
    \(pdg_{5493} = pdg_{2097} + pdg_{4299}\)
no validation is available for declarations 8311458118:
8311458118:
Compton's equation for scattering multiply expr 1 by expr 2
  1. 7917051060; locally 4200334:
    \(\vec{p}_{electron} = \vec{p}_{1}-\vec{p}_{2}\)
    \(pdg_{4299} = - pdg_{2097} + pdg_{6029}\)
  2. 7917051060; locally 4200334:
    \(\vec{p}_{electron} = \vec{p}_{1}-\vec{p}_{2}\)
    \(pdg_{4299} = - pdg_{2097} + pdg_{6029}\)
  1. 6742123016; locally 4218805:
    \(\vec{p}_{electron}\cdot\vec{p}_{electron} = ( \vec{p}_{1}\cdot\vec{p}_{1})+( \vec{p}_{2}\cdot\vec{p}_{2})-2( \vec{p}_{1}\cdot\vec{p}_{2})\)
    \(pdg_{4299}\)
Nothing to split 7917051060:
7917051060:
6742123016:
7917051060:
7917051060:
6742123016:
Compton's equation for scattering subtract X from both sides
  1. 8139187332; locally 5610925:
    \(\vec{p}_{1} = \vec{p}_{2}+\vec{p}_{electron}\)
    \(pdg_{6029} = pdg_{2097} + pdg_{4299}\)
  1. 0002338514:
    \(\vec{p}_{2}\)
    \(pdg_{2097}\)
  1. 5530148480; locally 4068150:
    \(\vec{p}_{1}-\vec{p}_{2} = \vec{p}_{electron}\)
    \(- pdg_{2097} + pdg_{6029} = pdg_{4299}\)
valid 8139187332:
5530148480:
8139187332:
5530148480:
Compton's equation for scattering substitute LHS of expr 1 into expr 2
  1. 8257621077; locally 2840008:
    \(\vec{p}_{\rm before} = \vec{p}_{1}\)
    \(pdg_{1302} = pdg_{6029}\)
  2. 1638282134; locally 4978059:
    \(\vec{p}_{\rm before} = \vec{p}_{\rm after}\)
    \(pdg_{1302} = pdg_{5493}\)
  1. 3951205425; locally 2491904:
    \(\vec{p}_{\rm after} = \vec{p}_{1}\)
    \(pdg_{5493} = pdg_{6029}\)
LHS diff is -pdg5493 + pdg6029 RHS diff is pdg5493 - pdg6029 8257621077:
1638282134:
3951205425:
8257621077:
1638282134:
3951205425:
Compton's equation for scattering declare initial expr
  1. 1638282134; locally 4978059:
    \(\vec{p}_{\rm before} = \vec{p}_{\rm after}\)
    \(pdg_{1302} = pdg_{5493}\)
no validation is available for declarations 1638282134:
1638282134:
identity sin(2 x) = 2 sin(x) cos(x) using Euler's equation multiply expr 1 by expr 2
  1. 2103023049; locally 6060683:
    \(\sin(x) = \frac{1}{2i}\left(\exp(i x)-\exp(-i x) \right)\)
    \(\sin{\left(pdg_{1464} \right)} = \frac{e^{pdg_{1464} pdg_{4621}} - e^{- pdg_{1464} pdg_{4621}}}{2 pdg_{4621}}\)
  2. 4585932229; locally 5011637:
    \(\cos(x) = \frac{1}{2}\left(\exp(i x)+\exp(-i x) \right)\)
    \(\cos{\left(pdg_{1464} \right)} = \frac{e^{pdg_{1464} pdg_{4621}}}{2} + \frac{e^{- pdg_{1464} pdg_{4621}}}{2}\)
  1. 3470587782; locally 6350246:
    \(\sin(x) \cos(x) = \frac{1}{2i}\left(\exp(i x)-\exp(-i x) \right) \frac{1}{2}\left(\exp(i x)+\exp(-i x) \right)\)
    \(\sin{\left(pdg_{1464} \right)} \cos{\left(pdg_{1464} \right)} = \frac{\left(\frac{e^{pdg_{1464} pdg_{4621}}}{2} + \frac{e^{- pdg_{1464} pdg_{4621}}}{2}\right) \left(e^{pdg_{1464} pdg_{4621}} - e^{- pdg_{1464} pdg_{4621}}\right)}{2 pdg_{4621}}\)
valid 2103023049:
4585932229:
3470587782:
2103023049:
4585932229:
3470587782:
identity sin(2 x) = 2 sin(x) cos(x) using Euler's equation RHS of expr 1 equals RHS of expr 2
  1. 9180861128; locally 6229292:
    \(2 \sin(x) \cos(x) = \frac{1}{2 i} \left( \exp(i 2 x) - \exp(-i 2 x) \right)\)
    \(2 \sin{\left(pdg_{1464} \right)} \cos{\left(pdg_{1464} \right)} = \frac{e^{2 pdg_{1464} pdg_{4621}} - e^{- 2 pdg_{1464} pdg_{4621}}}{2 pdg_{4621}}\)
  2. 8483686863; locally 1414263:
    \(\sin(2 x) = \frac{1}{2i}\left(\exp(i 2 x)-\exp(-i 2 x) \right)\)
    \(\sin{\left(2 pdg_{1464} \right)} = \frac{e^{2 pdg_{1464} pdg_{4621}} - e^{- 2 pdg_{1464} pdg_{4621}}}{2 pdg_{4621}}\)
  1. 2405307372; locally 7647794:
    \(\sin(2 x) = 2 \sin(x) \cos(x)\)
    \(\sin{\left(2 pdg_{1464} \right)} = 2 \sin{\left(pdg_{1464} \right)} \cos{\left(pdg_{1464} \right)}\)
valid 9180861128:
8483686863:
2405307372:
9180861128:
8483686863:
2405307372:
identity sin(2 x) = 2 sin(x) cos(x) using Euler's equation declare initial expr
  1. 2103023049; locally 6060683:
    \(\sin(x) = \frac{1}{2i}\left(\exp(i x)-\exp(-i x) \right)\)
    \(\sin{\left(pdg_{1464} \right)} = \frac{e^{pdg_{1464} pdg_{4621}} - e^{- pdg_{1464} pdg_{4621}}}{2 pdg_{4621}}\)
no validation is available for declarations 2103023049:
2103023049:
identity sin(2 x) = 2 sin(x) cos(x) using Euler's equation declare initial expr
  1. 4585932229; locally 5011637:
    \(\cos(x) = \frac{1}{2}\left(\exp(i x)+\exp(-i x) \right)\)
    \(\cos{\left(pdg_{1464} \right)} = \frac{e^{pdg_{1464} pdg_{4621}}}{2} + \frac{e^{- pdg_{1464} pdg_{4621}}}{2}\)
no validation is available for declarations 4585932229:
4585932229:
identity sin(2 x) = 2 sin(x) cos(x) using Euler's equation change variable X to Y
  1. 2103023049; locally 6060683:
    \(\sin(x) = \frac{1}{2i}\left(\exp(i x)-\exp(-i x) \right)\)
    \(\sin{\left(pdg_{1464} \right)} = \frac{e^{pdg_{1464} pdg_{4621}} - e^{- pdg_{1464} pdg_{4621}}}{2 pdg_{4621}}\)
  1. 4961662865:
    \(x\)
    \(pdg_{1464}\)
  2. 9110536742:
    \(2 x\)
    \(2 pdg_{1464}\)
  1. 8483686863; locally 1414263:
    \(\sin(2 x) = \frac{1}{2i}\left(\exp(i 2 x)-\exp(-i 2 x) \right)\)
    \(\sin{\left(2 pdg_{1464} \right)} = \frac{e^{2 pdg_{1464} pdg_{4621}} - e^{- 2 pdg_{1464} pdg_{4621}}}{2 pdg_{4621}}\)
valid 2103023049:
8483686863:
2103023049:
8483686863:
identity sin(2 x) = 2 sin(x) cos(x) using Euler's equation simplify
  1. 8699789241; locally 5714636:
    \(2 \sin(x) \cos(x) = \frac{1}{2 i} \left( \exp(i 2 x) - 1 + 1 - \exp(-i 2 x) \right)\)
    \(2 \sin{\left(pdg_{1464} \right)} \cos{\left(pdg_{1464} \right)} = \frac{e^{2 pdg_{1464} pdg_{4621}} - e^{- 2 pdg_{1464} pdg_{4621}}}{2 pdg_{4621}}\)
  1. 9180861128; locally 6229292:
    \(2 \sin(x) \cos(x) = \frac{1}{2 i} \left( \exp(i 2 x) - \exp(-i 2 x) \right)\)
    \(2 \sin{\left(pdg_{1464} \right)} \cos{\left(pdg_{1464} \right)} = \frac{e^{2 pdg_{1464} pdg_{4621}} - e^{- 2 pdg_{1464} pdg_{4621}}}{2 pdg_{4621}}\)
valid 8699789241:
9180861128:
8699789241:
9180861128:
identity sin(2 x) = 2 sin(x) cos(x) using Euler's equation declare final expr
  1. 2405307372; locally 7647794:
    \(\sin(2 x) = 2 \sin(x) \cos(x)\)
    \(\sin{\left(2 pdg_{1464} \right)} = 2 \sin{\left(pdg_{1464} \right)} \cos{\left(pdg_{1464} \right)}\)
no validation is available for declarations 2405307372:
2405307372:
identity sin(2 x) = 2 sin(x) cos(x) using Euler's equation multiply both sides by
  1. 3470587782; locally 6350246:
    \(\sin(x) \cos(x) = \frac{1}{2i}\left(\exp(i x)-\exp(-i x) \right) \frac{1}{2}\left(\exp(i x)+\exp(-i x) \right)\)
    \(\sin{\left(pdg_{1464} \right)} \cos{\left(pdg_{1464} \right)} = \frac{\left(\frac{e^{pdg_{1464} pdg_{4621}}}{2} + \frac{e^{- pdg_{1464} pdg_{4621}}}{2}\right) \left(e^{pdg_{1464} pdg_{4621}} - e^{- pdg_{1464} pdg_{4621}}\right)}{2 pdg_{4621}}\)
  1. 8642992037:
    \(2\)
    \(2\)
  1. 9894826550; locally 7867574:
    \(2 \sin(x) \cos(x) = \frac{1}{2i}\left(\exp(i x)-\exp(-i x) \right) \left(\exp(i x)+\exp(-i x) \right)\)
    \(2 \sin{\left(pdg_{1464} \right)} \cos{\left(pdg_{1464} \right)} = \frac{\left(e^{pdg_{1464} pdg_{4621}} - e^{- pdg_{1464} pdg_{4621}}\right) \left(e^{pdg_{1464} pdg_{4621}} + e^{- pdg_{1464} pdg_{4621}}\right)}{2 pdg_{4621}}\)
valid 3470587782:
9894826550:
3470587782:
9894826550:
identity sin(2 x) = 2 sin(x) cos(x) using Euler's equation simplify
  1. 9894826550; locally 7867574:
    \(2 \sin(x) \cos(x) = \frac{1}{2i}\left(\exp(i x)-\exp(-i x) \right) \left(\exp(i x)+\exp(-i x) \right)\)
    \(2 \sin{\left(pdg_{1464} \right)} \cos{\left(pdg_{1464} \right)} = \frac{\left(e^{pdg_{1464} pdg_{4621}} - e^{- pdg_{1464} pdg_{4621}}\right) \left(e^{pdg_{1464} pdg_{4621}} + e^{- pdg_{1464} pdg_{4621}}\right)}{2 pdg_{4621}}\)
  1. 8699789241; locally 5714636:
    \(2 \sin(x) \cos(x) = \frac{1}{2 i} \left( \exp(i 2 x) - 1 + 1 - \exp(-i 2 x) \right)\)
    \(2 \sin{\left(pdg_{1464} \right)} \cos{\left(pdg_{1464} \right)} = \frac{e^{2 pdg_{1464} pdg_{4621}} - e^{- 2 pdg_{1464} pdg_{4621}}}{2 pdg_{4621}}\)
valid 9894826550:
8699789241:
9894826550:
8699789241:
Euler equation to e^(i pi) + 1 = 0 simplify
  1. 8332931442; locally 1148677:
    \(\exp(i \pi) = \cos(\pi)+i \sin(\pi)\)
    \(e^{pdg_{3141} pdg_{4621}} = pdg_{4621} \sin{\left(pdg_{3141} \right)} + \cos{\left(pdg_{3141} \right)}\)
  1. 6885625907; locally 8524301:
    \(\exp(i \pi) = -1 + i 0\)
    \(e^{pdg_{3141} pdg_{4621}} = -1\)
LHS diff is 0 RHS diff is pdg4621*sin(pdg3141) + cos(pdg3141) + 1 8332931442:
6885625907:
8332931442:
6885625907:
Euler equation to e^(i pi) + 1 = 0 change variable X to Y
  1. 4938429483; locally 1580045:
    \(\exp(i x) = \cos(x)+i \sin(x)\)
    \(e^{pdg_{1464} pdg_{4621}} = pdg_{4621} \sin{\left(pdg_{1464} \right)} + \cos{\left(pdg_{1464} \right)}\)
  1. 3268645065:
    \(x\)
    \(pdg_{1464}\)
  2. 9350663581:
    \(\pi\)
    \(pdg_{3141}\)
  1. 8332931442; locally 1148677:
    \(\exp(i \pi) = \cos(\pi)+i \sin(\pi)\)
    \(e^{pdg_{3141} pdg_{4621}} = pdg_{4621} \sin{\left(pdg_{3141} \right)} + \cos{\left(pdg_{3141} \right)}\)
valid 4938429483:
8332931442:
4938429483:
8332931442:
Euler equation to e^(i pi) + 1 = 0 declare initial expr
  1. 4938429483; locally 1580045:
    \(\exp(i x) = \cos(x)+i \sin(x)\)
    \(e^{pdg_{1464} pdg_{4621}} = pdg_{4621} \sin{\left(pdg_{1464} \right)} + \cos{\left(pdg_{1464} \right)}\)
no validation is available for declarations 4938429483:
4938429483:
Euler equation to e^(i pi) + 1 = 0 add X to both sides
  1. 3331824625; locally 9610540:
    \(\exp(i \pi) = -1\)
    \(e^{pdg_{3141} pdg_{4621}} = -1\)
  1. 4901237716:
    \(1\)
    \(1\)
  1. 2501591100; locally 9472905:
    \(\exp(i \pi) + 1 = 0\)
    \(e^{pdg_{3141} pdg_{4621}} + 1 = 0\)
valid 3331824625:
2501591100:
3331824625:
2501591100:
Euler equation to e^(i pi) + 1 = 0 simplify
  1. 6885625907; locally 8524301:
    \(\exp(i \pi) = -1 + i 0\)
    \(e^{pdg_{3141} pdg_{4621}} = -1\)
  1. 3331824625; locally 9610540:
    \(\exp(i \pi) = -1\)
    \(e^{pdg_{3141} pdg_{4621}} = -1\)
valid 6885625907:
3331824625:
6885625907:
3331824625:
Euler equation to e^(i pi) + 1 = 0 declare final expr
  1. 2501591100; locally 9472905:
    \(\exp(i \pi) + 1 = 0\)
    \(e^{pdg_{3141} pdg_{4621}} + 1 = 0\)
no validation is available for declarations 2501591100:
2501591100:
time invariant force conserves energy substitute RHS of expr 1 into expr 2
  1. 9337785146; locally 6154610:
    \(v = \frac{x_2 - x_1}{t}\)
    \(pdg_{1357} = \frac{- pdg_{3852} + pdg_{5467}}{pdg_{1467}}\)
  2. 7267155233; locally 7539016:
    \(\frac{PE_2 - PE_1}{t} = -F \left( \frac{x_2 - x_1}{t} \right)\)
    \(\frac{- pdg_{4093} + pdg_{8849}}{pdg_{1467}} = - \frac{pdg_{4202} \left(- pdg_{3852} + pdg_{5467}\right)}{pdg_{1467}}\)
  1. 4872970974; locally 9383749:
    \(\frac{PE_2 - PE_1}{t} = -F v\)
    \(\frac{- pdg_{4093} + pdg_{8849}}{pdg_{1467}} = - pdg_{1357} pdg_{4202}\)
valid 9337785146:
7267155233:
4872970974:
9337785146:
7267155233:
4872970974:
time invariant force conserves energy substitute RHS of expr 1 into expr 2
  1. 4648451961; locally 8696678:
    \(v_2^2 - v_1^2 = (v_2 + v_1)(v_2 - v_1)\)
    \(- pdg_{2473}^{2} + pdg_{4770}^{2} = \left(- pdg_{2473} + pdg_{4770}\right) \left(pdg_{2473} + pdg_{4770}\right)\)
  2. 4270680309; locally 3040361:
    \(\frac{KE_2 - KE_1}{t} = \frac{1}{2} m \frac{\left( v_2^2 - v_1^2 \right)}{t}\)
    \(\frac{pdg_{1352} - pdg_{1955}}{pdg_{1467}} = \frac{pdg_{5156} \left(- pdg_{2473}^{2} + pdg_{4770}^{2}\right)}{2 pdg_{1467}}\)
  1. 9356924046; locally 6246951:
    \(\frac{KE_2 - KE_1}{t} = m \frac{v_2 + v_1}{2} \frac{ v_2 - v_1 }{t}\)
    \(\frac{pdg_{1352} - pdg_{1955}}{pdg_{1467}} = \frac{pdg_{5156} \left(- pdg_{2473} + pdg_{4770}\right) \left(\frac{pdg_{2473}}{2} + \frac{pdg_{4770}}{2}\right)}{pdg_{1467}}\)
valid 4648451961:
4270680309:
9356924046:
4648451961:
4270680309:
9356924046:
time invariant force conserves energy substitute RHS of expr 1 into expr 2
  1. 2857430695; locally 6973462:
    \(a = \frac{v_2 - v_1}{t}\)
    \(pdg_{9140} = \frac{- pdg_{2473} + pdg_{4770}}{pdg_{1467}}\)
  2. 7735737409; locally 6733685:
    \(\frac{KE_2 - KE_1}{t} = m v \frac{ v_2 - v_1 }{t}\)
    \(\frac{pdg_{1352} - pdg_{1955}}{pdg_{1467}} = \frac{pdg_{1357} pdg_{5156} \left(- pdg_{2473} + pdg_{4770}\right)}{pdg_{1467}}\)
  1. 4784793837; locally 4876963:
    \(\frac{KE_2 - KE_1}{t} = m v a\)
    \(\frac{pdg_{1352} - pdg_{1955}}{pdg_{1467}} = pdg_{1357} pdg_{5156} pdg_{9140}\)
valid 2857430695:
7735737409:
4784793837:
2857430695:
7735737409:
4784793837:
time invariant force conserves energy simplify
  1. 1772416655; locally 5300304:
    \(\frac{E_2 - E_1}{t} = v F - F v\)
    \(\frac{pdg_{4550} - pdg_{5579}}{pdg_{1467}} = 0\)
  1. 1809909100; locally 6495233:
    \(\frac{E_2 - E_1}{t} = 0\)
    \(\frac{pdg_{4550} - pdg_{5579}}{pdg_{1467}} = 0\)
valid 1772416655:
1809909100:
1772416655:
1809909100:
time invariant force conserves energy multiply both sides by
  1. 1809909100; locally 6495233:
    \(\frac{E_2 - E_1}{t} = 0\)
    \(\frac{pdg_{4550} - pdg_{5579}}{pdg_{1467}} = 0\)
  1. 5778176146:
    \(t\)
    \(pdg_{1467}\)
  1. 3806977900; locally 2075807:
    \(E_2 - E_1 = 0\)
    \(pdg_{4550} - pdg_{5579} = 0\)
valid 1809909100:
3806977900:
1809909100:
3806977900:
time invariant force conserves energy declare initial expr
  1. 8357234146; locally 6559987:
    \(KE = \frac{1}{2} m v^2\)
    \(pdg_{4929} = \frac{pdg_{1357}^{2} pdg_{5156}}{2}\)
no validation is available for declarations 8357234146:
8357234146:
time invariant force conserves energy substitute RHS of expr 1 into expr 2
  1. 9397152918; locally 3484339:
    \(v = \frac{v_1 + v_2}{2}\)
    \(pdg_{1357} = \frac{pdg_{2473}}{2} + \frac{pdg_{4770}}{2}\)
  2. 9356924046; locally 6246951:
    \(\frac{KE_2 - KE_1}{t} = m \frac{v_2 + v_1}{2} \frac{ v_2 - v_1 }{t}\)
    \(\frac{pdg_{1352} - pdg_{1955}}{pdg_{1467}} = \frac{pdg_{5156} \left(- pdg_{2473} + pdg_{4770}\right) \left(\frac{pdg_{2473}}{2} + \frac{pdg_{4770}}{2}\right)}{pdg_{1467}}\)
  1. 7735737409; locally 6733685:
    \(\frac{KE_2 - KE_1}{t} = m v \frac{ v_2 - v_1 }{t}\)
    \(\frac{pdg_{1352} - pdg_{1955}}{pdg_{1467}} = \frac{pdg_{1357} pdg_{5156} \left(- pdg_{2473} + pdg_{4770}\right)}{pdg_{1467}}\)
valid 9397152918:
9356924046:
7735737409:
9397152918:
9356924046:
7735737409:
time invariant force conserves energy substitute RHS of expr 1 into expr 2
  1. 4872970974; locally 9383749:
    \(\frac{PE_2 - PE_1}{t} = -F v\)
    \(\frac{- pdg_{4093} + pdg_{8849}}{pdg_{1467}} = - pdg_{1357} pdg_{4202}\)
  2. 2770069250; locally 2692856:
    \(\frac{E_2 - E_1}{t} = \frac{(KE_2 - KE_1)}{t} + \frac{(PE_2 - PE_1)}{t}\)
    \(\frac{pdg_{4550} - pdg_{5579}}{pdg_{1467}} = \frac{pdg_{1352} - pdg_{1955}}{pdg_{1467}} + \frac{- pdg_{4093} + pdg_{8849}}{pdg_{1467}}\)
  1. 3591237106; locally 9714818:
    \(\frac{E_2 - E_1}{t} = \frac{(KE_2 - KE_1)}{t} - F v\)
    \(\frac{pdg_{4550} - pg_{5579}}{pdg_{1467}} = - pdg_{1357} pdg_{4202} + \frac{pdg_{1352} - pdg_{1955}}{pdg_{1467}}\)
LHS diff is (-pdg5579 + pg5579)/pdg1467 RHS diff is (pdg1357*pdg1467*pdg4202 - pdg4093 + pdg8849)/pdg1467 4872970974:
2770069250:
3591237106:
4872970974:
2770069250:
3591237106:
time invariant force conserves energy change two variables in expr
  1. 8357234146; locally 6559987:
    \(KE = \frac{1}{2} m v^2\)
    \(pdg_{4929} = \frac{pdg_{1357}^{2} pdg_{5156}}{2}\)
  1. 6383056612:
    \(KE\)
    \(pdg_{4929}\)
  2. 6838659900:
    \(KE_2\)
    \(pdg_{1352}\)
  3. 9305761407:
    \(v\)
    \(pdg_{1357}\)
  4. 5011888122:
    \(v_2\)
    \(pdg_{4770}\)
  1. 7676652285; locally 6632540:
    \(KE_2 = \frac{1}{2} m v_2^2\)
    \(pdg_{1352} = \frac{pdg_{4770}^{2} pdg_{5156}}{2}\)
valid 8357234146:
7676652285:
8357234146:
7676652285:
time invariant force conserves energy divide both sides by
  1. 5733146966; locally 9602854:
    \(KE_2 - KE_1 = \frac{1}{2} m \left(v_2^2 - v_1^2\right)\)
    \(pdg_{1352} - pdg_{1955} = \frac{pdg_{5156} \left(- pdg_{2473}^{2} + pdg_{4770}^{2}\right)}{2}\)
  1. 6554292307:
    \(t\)
    \(pdg_{1467}\)
  1. 4270680309; locally 3040361:
    \(\frac{KE_2 - KE_1}{t} = \frac{1}{2} m \frac{\left( v_2^2 - v_1^2 \right)}{t}\)
    \(\frac{pdg_{1352} - pdg_{1955}}{pdg_{1467}} = \frac{pdg_{5156} \left(- pdg_{2473}^{2} + pdg_{4770}^{2}\right)}{2 pdg_{1467}}\)
valid 5733146966:
4270680309:
5733146966:
4270680309:
time invariant force conserves energy declare initial expr
  1. 5136652623; locally 8844119:
    \(E = KE + PE\)
    \(pdg_{4931} = pdg_{4929} + pdg_{4930}\)
no validation is available for declarations 5136652623:
5136652623:
time invariant force conserves energy change three variables in expr
  1. 5136652623; locally 8844119:
    \(E = KE + PE\)
    \(pdg_{4931} = pdg_{4929} + pdg_{4930}\)
  1. 1258245373:
    \(E\)
    \(pdg_{4931}\)
  2. 2344320475:
    \(E_2\)
    \(pdg_{4550}\)
  3. 6383056612:
    \(KE\)
    \(pdg_{4929}\)
  4. 7939947931:
    \(KE_2\)
    \(pdg_{1352}\)
  5. 5075406409:
    \(PE\)
    \(pdg_{4930}\)
  6. 5803210729:
    \(PE_2\)
    \(pdg_{8849}\)
  1. 7875206161; locally 5642407:
    \(E_2 = KE_2 + PE_2\)
    \(pdg_{4550} = pdg_{1352} + pdg_{8849}\)
valid 5136652623:
7875206161:
5136652623:
7875206161:
time invariant force conserves energy divide both sides by
  1. 5514556106; locally 2443387:
    \(E_2 - E_1 = (KE_2 - KE_1) + (PE_2 - PE_1)\)
    \(pdg_{4550} - pdg_{5579} = pdg_{1352} - pdg_{1955} - pdg_{4093} + pdg_{8849}\)
  1. 2081689540:
    \(t\)
    \(pdg_{1467}\)
  1. 2770069250; locally 2692856:
    \(\frac{E_2 - E_1}{t} = \frac{(KE_2 - KE_1)}{t} + \frac{(PE_2 - PE_1)}{t}\)
    \(\frac{pdg_{4550} - pdg_{5579}}{pdg_{1467}} = \frac{pdg_{1352} - pdg_{1955}}{pdg_{1467}} + \frac{- pdg_{4093} + pdg_{8849}}{pdg_{1467}}\)
valid 5514556106:
2770069250:
5514556106:
2770069250:
time invariant force conserves energy subtract expr 1 from expr 2
  1. 4928007622; locally 4208138:
    \(KE_1 = \frac{1}{2} m v_1^2\)
    \(pdg_{1955} = \frac{pdg_{2473}^{2} pdg_{5156}}{2}\)
  2. 7676652285; locally 6632540:
    \(KE_2 = \frac{1}{2} m v_2^2\)
    \(pdg_{1352} = \frac{pdg_{4770}^{2} pdg_{5156}}{2}\)
  1. 5733146966; locally 9602854:
    \(KE_2 - KE_1 = \frac{1}{2} m \left(v_2^2 - v_1^2\right)\)
    \(pdg_{1352} - pdg_{1955} = \frac{pdg_{5156} \left(- pdg_{2473}^{2} + pdg_{4770}^{2}\right)}{2}\)
valid 4928007622:
7676652285:
5733146966:
4928007622:
7676652285:
5733146966:
time invariant force conserves energy declare initial expr
  1. 2857430695; locally 6973462:
    \(a = \frac{v_2 - v_1}{t}\)
    \(pdg_{9140} = \frac{- pdg_{2473} + pdg_{4770}}{pdg_{1467}}\)
no validation is available for declarations 2857430695:
2857430695:
time invariant force conserves energy divide both sides by
  1. 7734996511; locally 1550851:
    \(PE_2 - PE_1 = -F ( x_2 - x_1 )\)
    \(- pdg_{4093} + pdg_{8849} = - pdg_{4202} \left(- pdg_{3852} + pdg_{5467}\right)\)
  1. 2016063530:
    \(t\)
    \(pdg_{1467}\)
  1. 7267155233; locally 7539016:
    \(\frac{PE_2 - PE_1}{t} = -F \left( \frac{x_2 - x_1}{t} \right)\)
    \(\frac{- pdg_{4093} + pdg_{8849}}{pdg_{1467}} = - \frac{pdg_{4202} \left(- pdg_{3852} + pdg_{5467}\right)}{pdg_{1467}}\)
valid 7734996511:
7267155233:
7734996511:
7267155233:
time invariant force conserves energy change two variables in expr
  1. 6715248283; locally 8497204:
    \(PE = -F x\)
    \(pdg_{4930} = - pdg_{4037} pdg_{4202}\)
  1. 3809726424:
    \(PE\)
    \(pdg_{4930}\)
  2. 6749533119:
    \(PE_1\)
    \(pdg_{4093}\)
  3. 4218009993:
    \(x\)
    \(pdg_{4037}\)
  4. 1552869972:
    \(x_1\)
    \(pdg_{3852}\)
  1. 4669290568; locally 9081932:
    \(PE_1 = -F x_1\)
    \(pdg_{4093} = - pdg_{3852} pdg_{4202}\)
valid 6715248283:
4669290568:
6715248283:
4669290568:
time invariant force conserves energy declare initial expr
  1. 5345738321; locally 8447573:
    \(F = m a\)
    \(pdg_{4202} = pdg_{5156} pdg_{9140}\)
no validation is available for declarations 5345738321:
5345738321:
time invariant force conserves energy change two variables in expr
  1. 6715248283; locally 8497204:
    \(PE = -F x\)
    \(pdg_{4930} = - pdg_{4037} pdg_{4202}\)
  1. 5075406409:
    \(PE\)
    \(pdg_{4930}\)
  2. 4522137851:
    \(PE_2\)
    \(pdg_{8849}\)
  3. 4188639044:
    \(x\)
    \(pdg_{4037}\)
  4. 4755369593:
    \(x_2\)
    \(pdg_{5467}\)
  1. 2431507955; locally 3988671:
    \(PE_2 = -F x_2\)
    \(pdg_{8849} = - pdg_{4202} pdg_{5467}\)
valid 6715248283:
2431507955:
6715248283:
2431507955:
assumes constant force
time invariant force conserves energy subtract expr 1 from expr 2
  1. 4303372136; locally 1298003:
    \(E_1 = KE_1 + PE_1\)
    \(pdg_{5579} = pdg_{1955} + pdg_{4093}\)
  2. 7875206161; locally 5642407:
    \(E_2 = KE_2 + PE_2\)
    \(pdg_{4550} = pdg_{1352} + pdg_{8849}\)
  1. 5514556106; locally 2443387:
    \(E_2 - E_1 = (KE_2 - KE_1) + (PE_2 - PE_1)\)
    \(pdg_{4550} - pdg_{5579} = pdg_{1352} - pdg_{1955} - pdg_{4093} + pdg_{8849}\)
valid 4303372136:
7875206161:
5514556106:
4303372136:
7875206161:
5514556106:
time invariant force conserves energy declare final expr
  1. 8558338742; locally 1781127:
    \(E_2 = E_1\)
    \(pdg_{4550} = pdg_{5579}\)
no validation is available for declarations 8558338742:
8558338742:
time invariant force conserves energy substitute RHS of expr 1 into expr 2
  1. 5345738321; locally 8447573:
    \(F = m a\)
    \(pdg_{4202} = pdg_{5156} pdg_{9140}\)
  2. 4784793837; locally 4876963:
    \(\frac{KE_2 - KE_1}{t} = m v a\)
    \(\frac{pdg_{1352} - pdg_{1955}}{pdg_{1467}} = pdg_{1357} pdg_{5156} pdg_{9140}\)
  1. 2186083170; locally 7034924:
    \(\frac{KE_2 - KE_1}{t} = v F\)
    \(\frac{pdg_{1352} - pdg_{1955}}{pdg_{1467}} = pdg_{1357} pdg_{4202}\)
valid 5345738321:
4784793837:
2186083170:
5345738321:
4784793837:
2186083170:
time invariant force conserves energy declare initial expr
  1. 5781981178; locally 2776565:
    \(x^2 - y^2 = (x+y)(x-y)\)
    \(- pdg_{1452}^{2} + pdg_{1464}^{2} = \left(- pdg_{1452} + pdg_{1464}\right) \left(pdg_{1452} + pdg_{1464}\right)\)
no validation is available for declarations 5781981178:
5781981178:
time invariant force conserves energy change two variables in expr
  1. 8357234146; locally 6559987:
    \(KE = \frac{1}{2} m v^2\)
    \(pdg_{4929} = \frac{pdg_{1357}^{2} pdg_{5156}}{2}\)
  1. 4147101187:
    \(KE\)
    \(pdg_{4929}\)
  2. 6964468708:
    \(KE_1\)
    \(pdg_{1955}\)
  3. 5398681503:
    \(v\)
    \(pdg_{1357}\)
  4. 3105350101:
    \(v_1\)
    \(pdg_{2473}\)
  1. 4928007622; locally 4208138:
    \(KE_1 = \frac{1}{2} m v_1^2\)
    \(pdg_{1955} = \frac{pdg_{2473}^{2} pdg_{5156}}{2}\)
valid 8357234146:
4928007622:
8357234146:
4928007622:
time invariant force conserves energy declare initial expr
  1. 6715248283; locally 8497204:
    \(PE = -F x\)
    \(pdg_{4930} = - pdg_{4037} pdg_{4202}\)
no validation is available for declarations 6715248283:
6715248283:
time invariant force conserves energy subtract expr 1 from expr 2
  1. 4669290568; locally 9081932:
    \(PE_1 = -F x_1\)
    \(pdg_{4093} = - pdg_{3852} pdg_{4202}\)
  2. 2431507955; locally 3988671:
    \(PE_2 = -F x_2\)
    \(pdg_{8849} = - pdg_{4202} pdg_{5467}\)
  1. 7734996511; locally 1550851:
    \(PE_2 - PE_1 = -F ( x_2 - x_1 )\)
    \(- pdg_{4093} + pdg_{8849} = - pdg_{4202} \left(- pdg_{3852} + pdg_{5467}\right)\)
valid 4669290568:
2431507955:
7734996511:
4669290568:
2431507955:
7734996511:
time invariant force conserves energy add X to both sides
  1. 3806977900; locally 2075807:
    \(E_2 - E_1 = 0\)
    \(pdg_{4550} - pdg_{5579} = 0\)
  1. 5960438249:
    \(E_1\)
    \(pdg_{5579}\)
  1. 8558338742; locally 1781127:
    \(E_2 = E_1\)
    \(pdg_{4550} = pdg_{5579}\)
valid 3806977900:
8558338742:
3806977900:
8558338742:
time invariant force conserves energy change two variables in expr
  1. 5781981178; locally 2776565:
    \(x^2 - y^2 = (x+y)(x-y)\)
    \(- pdg_{1452}^{2} + pdg_{1464}^{2} = \left(- pdg_{1452} + pdg_{1464}\right) \left(pdg_{1452} + pdg_{1464}\right)\)
  1. 1025759423:
    \(y\)
    \(pdg_{1452}\)
  2. 5239755033:
    \(v_1\)
    \(pdg_{2473}\)
  3. 8173074178:
    \(x\)
    \(pdg_{1464}\)
  4. 4319470443:
    \(v_2\)
    \(pdg_{4770}\)
  1. 4648451961; locally 8696678:
    \(v_2^2 - v_1^2 = (v_2 + v_1)(v_2 - v_1)\)
    \(- pdg_{2473}^{2} + pdg_{4770}^{2} = \left(- pdg_{2473} + pdg_{4770}\right) \left(pdg_{2473} + pdg_{4770}\right)\)
valid 5781981178:
4648451961:
5781981178:
4648451961:
time invariant force conserves energy declare initial expr
  1. 9337785146; locally 6154610:
    \(v = \frac{x_2 - x_1}{t}\)
    \(pdg_{1357} = \frac{- pdg_{3852} + pdg_{5467}}{pdg_{1467}}\)
no validation is available for declarations 9337785146:
9337785146:
time invariant force conserves energy declare initial expr
  1. 9397152918; locally 3484339:
    \(v = \frac{v_1 + v_2}{2}\)
    \(pdg_{1357} = \frac{pdg_{2473}}{2} + \frac{pdg_{4770}}{2}\)
no validation is available for declarations 9397152918:
9397152918:
time invariant force conserves energy change three variables in expr
  1. 5136652623; locally 8844119:
    \(E = KE + PE\)
    \(pdg_{4931} = pdg_{4929} + pdg_{4930}\)
  1. 3749492596:
    \(E\)
    \(pdg_{4931}\)
  2. 4213426349:
    \(E_1\)
    \(pdg_{5579}\)
  3. 4147101187:
    \(KE\)
    \(pdg_{4929}\)
  4. 1092872200:
    \(KE_1\)
    \(pdg_{1955}\)
  5. 3809726424:
    \(PE\)
    \(pdg_{4930}\)
  6. 8061701434:
    \(PE_1\)
    \(pdg_{4093}\)
  1. 4303372136; locally 1298003:
    \(E_1 = KE_1 + PE_1\)
    \(pdg_{5579} = pdg_{1955} + pdg_{4093}\)
valid 5136652623:
4303372136:
5136652623:
4303372136:
time invariant force conserves energy substitute RHS of expr 1 into expr 2
  1. 2186083170; locally 7034924:
    \(\frac{KE_2 - KE_1}{t} = v F\)
    \(\frac{pdg_{1352} - pdg_{1955}}{pdg_{1467}} = pdg_{1357} pdg_{4202}\)
  2. 3591237106; locally 9714818:
    \(\frac{E_2 - E_1}{t} = \frac{(KE_2 - KE_1)}{t} - F v\)
    \(\frac{pdg_{4550} - pg_{5579}}{pdg_{1467}} = - pdg_{1357} pdg_{4202} + \frac{pdg_{1352} - pdg_{1955}}{pdg_{1467}}\)
  1. 1772416655; locally 5300304:
    \(\frac{E_2 - E_1}{t} = v F - F v\)
    \(\frac{pdg_{4550} - pdg_{5579}}{pdg_{1467}} = 0\)
LHS diff is (pdg5579 - pg5579)/pdg1467 RHS diff is 0 2186083170:
3591237106:
1772416655:
2186083170:
3591237106:
1772416655:
escape velocity swap LHS with RHS
  1. 2977457786; locally 3358651:
    \(2 G \frac{m_{\rm Earth}}{r_{\rm Earth}} = v_{\rm escape}^2\)
    \(\frac{2 pdg_{5458} pdg_{6277}}{pdg_{3236}} = pdg_{8656}^{2}\)
  1. 9412953728; locally 3908344:
    \(v_{\rm escape}^2 = 2 G \frac{m_{\rm Earth}}{r_{\rm Earth}}\)
    \(pdg_{8656}^{2} = \frac{2 pdg_{5458} pdg_{6277}}{pdg_{3236}}\)
valid 2977457786:
9412953728:
2977457786:
9412953728:
escape velocity substitute LHS of two expressions into expr
  1. 4303372136; locally 6310702:
    \(E_1 = KE_1 + PE_1\)
    \(pdg_{5579} = pdg_{1955} + pdg_{4093}\)
  2. 7875206161; locally 5160388:
    \(E_2 = KE_2 + PE_2\)
    \(pdg_{4550} = pdg_{1352} + pdg_{8849}\)
  3. 8558338742; locally 6330719:
    \(E_2 = E_1\)
    \(pdg_{4550} = pdg_{5579}\)
  1. 8960645192; locally 4840471:
    \(KE_2 + PE_2 = KE_1 + PE_1\)
    \(pdg_{1552} + pdg_{8849} = pdg_{1955} + pdg_{4093}\)
failed 4303372136:
7875206161:
8558338742:
8960645192:
4303372136:
7875206161:
8558338742:
8960645192:
escape velocity declare assumption
  1. 2267521164; locally 7682341:
    \(PE_2 = 0\)
    \(pdg_{8849} = 0\)
no validation is available for declarations 2267521164:
2267521164:
escape velocity declare initial expr
  1. 7573835180; locally 6773616:
    \(PE_{\rm Earth\ surface} = -W\)
    \(pdg_{6431} = - pdg_{6789}\)
no validation is available for declarations 7573835180:
7573835180:
escape velocity multiply both sides by
  1. 1143343287; locally 7567097:
    \(G \frac{m_{\rm Earth}}{r_{\rm Earth}} = \frac{1}{2} v_{\rm escape}^2\)
    \(\frac{pdg_{5458} pdg_{6277}}{pdg_{3236}} = \frac{pdg_{8656}^{2}}{2}\)
  1. 5775658332:
    \(2\)
    \(2\)
  1. 2977457786; locally 3358651:
    \(2 G \frac{m_{\rm Earth}}{r_{\rm Earth}} = v_{\rm escape}^2\)
    \(\frac{2 pdg_{5458} pdg_{6277}}{pdg_{3236}} = pdg_{8656}^{2}\)
valid 1143343287:
2977457786:
1143343287:
2977457786:
escape velocity evaluate definite integral
  1. 4447113478; locally 4803506:
    \(\int dW = G m_1 m_2 \int_{ r_{\rm Earth} }^{\infty} \frac{1}{x^2} dx\)
    \(\int 1\, dpdg_{6789} = pdg_{4851} pdg_{5022} pdg_{6277} \int\limits_{pdg_{3236}}^{infty} \frac{1}{pdg_{4037}^{2}}\, dpdg_{4037}\)
  1. 5732331610; locally 1089445:
    \(W = G m_1 m_2 \left( \frac{1}{x} \bigg\rvert_{ r_{\rm Earth} }^{\infty} \right)\)
    \(pdg_{6277}\)
Nothing to split 4447113478:
5732331610:
4447113478:
5732331610:
escape velocity simplify
  1. 5978756813; locally 2190752:
    \(W = G m_{\rm Earth} m \left( 0 - \frac{-1}{ r_{\rm Earth}} \right)\)
    \(pdg_{6789} = \frac{pdg_{5156} pdg_{5458} pdg_{6277}}{pdg_{3236}}\)
  1. 7749253510; locally 2238158:
    \(W = G \frac{m_{\rm Earth} m }{ r_{\rm Earth}}\)
    \(pdg_{6789} = \frac{pdg_{5156} pdg_{5458} pdg_{6277}}{pdg_{3236}}\)
valid 5978756813:
7749253510:
5978756813:
7749253510:
escape velocity declare final expr
  1. 1330874553; locally 6389964:
    \(v_{\rm escape} = \sqrt{2 G \frac{m_{\rm Earth}}{r_{\rm Earth}}}\)
    \(pdg_{8656} = \sqrt{2} \sqrt{\frac{pdg_{5458} pdg_{6277}}{pdg_{3236}}}\)
no validation is available for declarations 1330874553:
1330874553:
escape velocity change two variables in expr
  1. 1330874553; locally 6389964:
    \(v_{\rm escape} = \sqrt{2 G \frac{m_{\rm Earth}}{r_{\rm Earth}}}\)
    \(pdg_{8656} = \sqrt{2} \sqrt{\frac{pdg_{5458} pdg_{6277}}{pdg_{3236}}}\)
  1. 2674546234:
    \(m_{\rm Earth}\)
    \(pdg_{5458}\)
  2. 2135482543:
    \(m\)
    \(pdg_{5156}\)
  3. 2396787389:
    \(r_{\rm Earth}\)
    \(pdg_{3236}\)
  4. 8020058613:
    \(r\)
    \(pdg_{2530}\)
  1. 5404822208; locally 1619188:
    \(v_{\rm escape} = \sqrt{2 G \frac{m}{r}}\)
    \(pdg_{8656} = \sqrt{2} \sqrt{\frac{pdg_{5156} pdg_{6277}}{pdg_{2530}}}\)
valid 1330874553:
5404822208:
1330874553:
5404822208:
replaced Earth-specific variables
escape velocity square root both sides
  1. 9412953728; locally 3908344:
    \(v_{\rm escape}^2 = 2 G \frac{m_{\rm Earth}}{r_{\rm Earth}}\)
    \(pdg_{8656}^{2} = \frac{2 pdg_{5458} pdg_{6277}}{pdg_{3236}}\)
  1. 1330874553; locally 6389964:
    \(v_{\rm escape} = \sqrt{2 G \frac{m_{\rm Earth}}{r_{\rm Earth}}}\)
    \(pdg_{8656} = \sqrt{2} \sqrt{\frac{pdg_{5458} pdg_{6277}}{pdg_{3236}}}\)
  2. 2750380042; locally 8779043:
    \(v_{\rm escape} = -\sqrt{2 G \frac{m_{\rm Earth}}{r_{\rm Earth}}}\)
    \(pdg_{8656} = - \sqrt{2} \sqrt{\frac{pdg_{5458} pdg_{6277}}{pdg_{3236}}}\)
no check performed 9412953728:
1330874553:
2750380042:
9412953728:
1330874553:
2750380042:
escape velocity substitute LHS of expr 1 into expr 2
  1. 6935745841; locally 3279838:
    \(F = G \frac{m_1 m_2}{x^2}\)
    \(pdg_{4202} = \frac{pdg_{4851} pdg_{5022} pdg_{6277}}{pdg_{4037}^{2}}\)
  2. 1590774089; locally 2123766:
    \(dW = F dx\)
    \(pdg_{9398} = pdg_{4202} pdg_{9199}\)
  1. 8604483515; locally 3686928:
    \(dW = G \frac{m_1 m_2}{x^2} dx\)
    \(pdg_{9398} = \frac{pdg_{4851} pdg_{5022} pdg_{6277} pdg_{9199}}{pdg_{4037}^{2}}\)
valid 6935745841:
1590774089:
8604483515:
6935745841:
1590774089:
8604483515:
escape velocity simplify
  1. 9703482302; locally 6523887:
    \(G \frac{m_{\rm Earth} m}{r_{\rm Earth}} = \frac{1}{2} m v_{\rm escape}^2\)
    \(\frac{pdg_{5156} pdg_{5458} pdg_{6277}}{pdg_{3236}} = \frac{pdg_{5156} pdg_{8656}^{2}}{2}\)
  1. 1143343287; locally 7567097:
    \(G \frac{m_{\rm Earth}}{r_{\rm Earth}} = \frac{1}{2} v_{\rm escape}^2\)
    \(\frac{pdg_{5458} pdg_{6277}}{pdg_{3236}} = \frac{pdg_{8656}^{2}}{2}\)
LHS diff is pdg5458*pdg6277*(pdg5156 - 1)/pdg3236 RHS diff is pdg8656**2*(pdg5156 - 1)/2 9703482302:
1143343287:
9703482302:
1143343287:
escape velocity integrate
  1. 8604483515; locally 3686928:
    \(dW = G \frac{m_1 m_2}{x^2} dx\)
    \(pdg_{9398} = \frac{pdg_{4851} pdg_{5022} pdg_{6277} pdg_{9199}}{pdg_{4037}^{2}}\)
  1. 4447113478; locally 4803506:
    \(\int dW = G m_1 m_2 \int_{ r_{\rm Earth} }^{\infty} \frac{1}{x^2} dx\)
    \(\int 1\, dpdg_{6789} = pdg_{4851} pdg_{5022} pdg_{6277} \int\limits_{pdg_{3236}}^{infty} \frac{1}{pdg_{4037}^{2}}\, dpdg_{4037}\)
no check performed 8604483515:
4447113478:
8604483515:
4447113478:
escape velocity substitute LHS of expr 1 into expr 2
  1. 7749253510; locally 2238158:
    \(W = G \frac{m_{\rm Earth} m }{ r_{\rm Earth}}\)
    \(pdg_{6789} = \frac{pdg_{5156} pdg_{5458} pdg_{6277}}{pdg_{3236}}\)
  2. 7573835180; locally 6773616:
    \(PE_{\rm Earth\ surface} = -W\)
    \(pdg_{6431} = - pdg_{6789}\)
  1. 3846041519; locally 9437784:
    \(PE_{\rm Earth\ surface} = -G \frac{m_{\rm Earth} m}{r_{\rm Earth}}\)
    \(pdg_{6431} = - \frac{pdg_{5156} pdg_{5458} pdg_{6277}}{pdg_{3236}}\)
valid 7749253510:
7573835180:
3846041519:
7749253510:
7573835180:
3846041519:
escape velocity declare initial expr
  1. 6935745841; locally 3279838:
    \(F = G \frac{m_1 m_2}{x^2}\)
    \(pdg_{4202} = \frac{pdg_{4851} pdg_{5022} pdg_{6277}}{pdg_{4037}^{2}}\)
no validation is available for declarations 6935745841:
6935745841:
escape velocity declare assumption
  1. 1840080113; locally 9324316:
    \(KE_2 = 0\)
    \(pdg_{1552} = 0\)
no validation is available for declarations 1840080113:
1840080113:
escape velocity substitute LHS of two expressions into expr
  1. 2267521164; locally 7682341:
    \(PE_2 = 0\)
    \(pdg_{8849} = 0\)
  2. 1840080113; locally 9324316:
    \(KE_2 = 0\)
    \(pdg_{1552} = 0\)
  3. 8960645192; locally 4840471:
    \(KE_2 + PE_2 = KE_1 + PE_1\)
    \(pdg_{1552} + pdg_{8849} = pdg_{1955} + pdg_{4093}\)
  1. 9749777192; locally 8369684:
    \(0 = KE_1 + PE_1\)
    \(0 = pdg_{1955} + pdg_{4093}\)
failed 2267521164:
1840080113:
8960645192:
9749777192:
2267521164:
1840080113:
8960645192:
9749777192:
escape velocity change two variables in expr
  1. 5732331610; locally 1089445:
    \(W = G m_1 m_2 \left( \frac{1}{x} \bigg\rvert_{ r_{\rm Earth} }^{\infty} \right)\)
    \(pdg_{6277}\)
  1. 1413137236:
    \(m_1\)
    \(pdg_{5022}\)
  2. 9072369552:
    \(m_{\rm Earth}\)
    \(pdg_{5458}\)
  3. 2764966428:
    \(m_2\)
    \(pdg_{4851}\)
  4. 7140470627:
    \(m\)
    \(pdg_{5156}\)
  1. 6131764194; locally 2341415:
    \(W = G m_{\rm Earth} m \left( \frac{1}{x^2} \bigg\rvert_{ r_{\rm Earth} }^{\infty} \right)\)
    \(W = \frac{pdg_{5156} pdg_{5458} pdg_{6277}}{pdg_{4037}^{2}}\)
Nothing to split 5732331610:
6131764194:
5732331610:
6131764194:
escape velocity substitute LHS of two expressions into expr
  1. 6870322215; locally 5106827:
    \(KE_{\rm escape} = \frac{1}{2} m v_{\rm escape}^2\)
    \(pdg_{5332} = \frac{pdg_{5156} pdg_{8656}^{2}}{2}\)
  2. 3846041519; locally 9437784:
    \(PE_{\rm Earth\ surface} = -G \frac{m_{\rm Earth} m}{r_{\rm Earth}}\)
    \(pdg_{6431} = - \frac{pdg_{5156} pdg_{5458} pdg_{6277}}{pdg_{3236}}\)
  3. 2503972039; locally 9967559:
    \(0 = KE_{\rm escape} + PE_{\rm Earth\ surface}\)
    \(0 = pdg_{5332} + pdg_{6431}\)
  1. 2042298788; locally 3493665:
    \(0 = -G \frac{m_{\rm Earth} m}{r_{\rm Earth}} + \frac{1}{2} m v_{\rm escape}^2\)
    \(0 = \frac{pdg_{5156} pdg_{8656}^{2}}{2} - \frac{pdg_{5156} pdg_{5458} pdg_{6277}}{pdg_{3236}}\)
failed 6870322215:
3846041519:
2503972039:
2042298788:
6870322215:
3846041519:
2503972039:
2042298788:
escape velocity change two variables in expr
  1. 8357234146; locally 3778087:
    \(KE = \frac{1}{2} m v^2\)
    \(pdg_{4929} = \frac{pdg_{1357}^{2} pdg_{5156}}{2}\)
  1. 5021965469:
    \(KE\)
    \(pdg_{4929}\)
  2. 9370882921:
    \(KE_{\rm escape}\)
    \(pdg_{5332}\)
  3. 6681646197:
    \(v\)
    \(pdg_{1357}\)
  4. 6498985149:
    \(v_{\rm escape}\)
    \(pdg_{8656}\)
  1. 6870322215; locally 5106827:
    \(KE_{\rm escape} = \frac{1}{2} m v_{\rm escape}^2\)
    \(pdg_{5332} = \frac{pdg_{5156} pdg_{8656}^{2}}{2}\)
valid 8357234146:
6870322215:
8357234146:
6870322215:
escape velocity add X to both sides
  1. 2042298788; locally 3493665:
    \(0 = -G \frac{m_{\rm Earth} m}{r_{\rm Earth}} + \frac{1}{2} m v_{\rm escape}^2\)
    \(0 = \frac{pdg_{5156} pdg_{8656}^{2}}{2} - \frac{pdg_{5156} pdg_{5458} pdg_{6277}}{pdg_{3236}}\)
  1. 5050429607:
    \(G \frac{m_{\rm Earth} m}{r_{\rm Earth}}\)
    \(\frac{pdg_{5156} pdg_{5458} pdg_{6277}}{pdg_{3236}}\)
  1. 9703482302; locally 6523887:
    \(G \frac{m_{\rm Earth} m}{r_{\rm Earth}} = \frac{1}{2} m v_{\rm escape}^2\)
    \(\frac{pdg_{5156} pdg_{5458} pdg_{6277}}{pdg_{3236}} = \frac{pdg_{5156} pdg_{8656}^{2}}{2}\)
valid 2042298788:
9703482302:
2042298788:
9703482302:
escape velocity simplify
  1. 6131764194; locally 2341415:
    \(W = G m_{\rm Earth} m \left( \frac{1}{x^2} \bigg\rvert_{ r_{\rm Earth} }^{\infty} \right)\)
    \(W = \frac{pdg_{5156} pdg_{5458} pdg_{6277}}{pdg_{4037}^{2}}\)
  1. 5978756813; locally 2190752:
    \(W = G m_{\rm Earth} m \left( 0 - \frac{-1}{ r_{\rm Earth}} \right)\)
    \(pdg_{6789} = \frac{pdg_{5156} pdg_{5458} pdg_{6277}}{pdg_{3236}}\)
LHS diff is W - pdg6789 RHS diff is pdg5156*pdg5458*pdg6277*(pdg3236 - pdg4037**2)/(pdg3236*pdg4037**2) 6131764194:
5978756813:
6131764194:
5978756813:
escape velocity change two variables in expr
  1. 9749777192; locally 8369684:
    \(0 = KE_1 + PE_1\)
    \(0 = pdg_{1955} + pdg_{4093}\)
  1. 5591692598:
    \(KE_1\)
    \(pdg_{1955}\)
  2. 8416464049:
    \(KE_{\rm escape}\)
    \(pdg_{5332}\)
  3. 6158970683:
    \(PE_1\)
    \(pdg_{4093}\)
  4. 8871333437:
    \(PE_{\rm Earth\ surface}\)
    \(pdg_{6431}\)
  1. 2503972039; locally 9967559:
    \(0 = KE_{\rm escape} + PE_{\rm Earth\ surface}\)
    \(0 = pdg_{5332} + pdg_{6431}\)
valid 9749777192:
2503972039:
9749777192:
2503972039:
Schwarzschild radius for non-rotating black hole change two variables in expr
  1. 8946383937; locally 2478510:
    \(v_{\rm escape}^2 = 2 G \frac{m}{r}\)
    \(pdg_{8656}^{2} = \frac{2 pdg_{5156} pdg_{6277}}{pdg_{2530}}\)
  1. 8362338572:
    \(v_{\rm escape}\)
    \(pdg_{8656}\)
  2. 1238593037:
    \(c\)
    \(pdg_{4567}\)
  3. 2660368546:
    \(r\)
    \(pdg_{2530}\)
  4. 9933742680:
    \(r_{\rm Schwarzschild}\)
    \(pdg_{4518}\)
  1. 4275004561; locally 5459812:
    \(c^2 = 2 G \frac{m}{r_{\rm Schwarzschild}}\)
    \(pdg_{4567}^{2} = \frac{2 pdg_{5156} pdg_{6277}}{pdg_{4518}}\)
valid 8946383937:
4275004561:
8946383937:
4275004561:
Schwarzschild radius for non-rotating black hole divide both sides by
  1. 2883079365; locally 9932666:
    \(r_{\rm Schwarzschild} c^2 = 2 G m\)
    \(pdg_{4518} pdg_{4567}^{2} = 2 pdg_{5156} pdg_{6277}\)
  1. 7263534144:
    \(c^2\)
    \(pdg_{4567}^{2}\)
  1. 6800170830; locally 9994959:
    \(r_{\rm Schwarzschild} = \frac{2 G m}{c^2}\)
    \(pdg_{4518} = \frac{2 pdg_{5156} pdg_{6277}}{pdg_{4567}^{2}}\)
valid 2883079365:
6800170830:
2883079365:
6800170830:
Schwarzschild radius for non-rotating black hole raise both sides to power
  1. 5404822208; locally 1044984:
    \(v_{\rm escape} = \sqrt{2 G \frac{m}{r}}\)
    \(pdg_{8656} = \sqrt{2} \sqrt{\frac{pdg_{5156} pdg_{6277}}{pdg_{2530}}}\)
  1. 3663007361:
    \(2\)
    \(2\)
  1. 8946383937; locally 2478510:
    \(v_{\rm escape}^2 = 2 G \frac{m}{r}\)
    \(pdg_{8656}^{2} = \frac{2 pdg_{5156} pdg_{6277}}{pdg_{2530}}\)
no check is performed 5404822208:
8946383937:
5404822208:
8946383937:
Schwarzschild radius for non-rotating black hole multiply both sides by
  1. 4275004561; locally 5459812:
    \(c^2 = 2 G \frac{m}{r_{\rm Schwarzschild}}\)
    \(pdg_{4567}^{2} = \frac{2 pdg_{5156} pdg_{6277}}{pdg_{4518}}\)
  1. 7194432406:
    \(r_{\rm Schwarzschild}\)
    \(pdg_{4518}\)
  1. 2883079365; locally 9932666:
    \(r_{\rm Schwarzschild} c^2 = 2 G m\)
    \(pdg_{4518} pdg_{4567}^{2} = 2 pdg_{5156} pdg_{6277}\)
valid 4275004561:
2883079365:
4275004561:
2883079365:
coefficient of thermal expansion using the equation of state for an ideal gas simplify
  1. 6925244346; locally 7845152:
    \(\alpha = \frac{PV}{T} \frac{1}{VP}\)
    \(pdg_{4686} = \frac{pdg_{7586} pdg_{8134}}{pdg_{7343}}\)
  1. 2472653783; locally 2491768:
    \(\alpha = \frac{1}{T}\)
    \(pdg_{4686} = \frac{1}{pdg_{7343}}\)
LHS diff is 0 RHS diff is (pdg7586*pdg8134 - 1)/pdg7343 6925244346:
2472653783:
6925244346:
2472653783:
coefficient of thermal expansion using the equation of state for an ideal gas declare initial expr
  1. 8435841627; locally 5130250:
    \(P V = n R T\)
    \(pdg_{7586} pdg_{8134} = pdg_{2834} pdg_{7343} pdg_{8179}\)
no validation is available for declarations 8435841627:
8435841627:
coefficient of thermal expansion using the equation of state for an ideal gas declare initial expr
  1. 3497828859; locally 5927974:
    \(V = \frac{n R T}{P}\)
    \(pdg_{7586} = \frac{pdg_{2834} pdg_{7343} pdg_{8179}}{pdg_{8134}}\)
no validation is available for declarations 3497828859:
3497828859:
coefficient of thermal expansion using the equation of state for an ideal gas substitute RHS of expr 1 into expr 2
  1. 2613006036; locally 8283443:
    \(\frac{PV}{T} = nR\)
    \(\frac{pdg_{7586} pdg_{8134}}{pdg_{7343}} = pdg_{2834} pdg_{8179}\)
  2. 5962145508; locally 4600503:
    \(\alpha = \frac{nR}{VP}\)
    \(pdg_{4686} = \frac{pdg_{2834} pdg_{8179}}{pdg_{7586} pdg_{8134}}\)
  1. 6925244346; locally 7845152:
    \(\alpha = \frac{PV}{T} \frac{1}{VP}\)
    \(pdg_{4686} = \frac{pdg_{7586} pdg_{8134}}{pdg_{7343}}\)
LHS diff is 0 RHS diff is (-pdg7586*pdg8134 + 1)/pdg7343 2613006036:
5962145508:
6925244346:
2613006036:
5962145508:
6925244346:
coefficient of thermal expansion using the equation of state for an ideal gas declare initial expr
  1. 3464107376; locally 5888046:
    \(\alpha = \frac{1}{V} \left( \frac{\partial V}{\partial T} \right)_p\)
    \(pdg_{4686} = \frac{\frac{d}{d pdg_{7343}} pdg_{7586}}{pdg_{7586}}\)
no validation is available for declarations 3464107376:
3464107376:
coefficient of thermal expansion using the equation of state for an ideal gas simplify
  1. 1311403394; locally 7236464:
    \(\alpha = \frac{1}{V} \frac{nR}{P} \left( \frac{\partial T}{\partial T} \right)_P\)
    \(pdg_{4686} = \frac{pdg_{2834} pdg_{8179} \frac{d}{d pdg_{7343}} pdg_{7343}}{pdg_{7586} pdg_{8134}}\)
  1. 5962145508; locally 4600503:
    \(\alpha = \frac{nR}{VP}\)
    \(pdg_{4686} = \frac{pdg_{2834} pdg_{8179}}{pdg_{7586} pdg_{8134}}\)
valid 1311403394:
5962145508:
1311403394:
5962145508:
coefficient of thermal expansion using the equation of state for an ideal gas divide both sides by
  1. 8435841627; locally 5130250:
    \(P V = n R T\)
    \(pdg_{7586} pdg_{8134} = pdg_{2834} pdg_{7343} pdg_{8179}\)
  1. 7924842770:
    \(T\)
    \(pdg_{7343}\)
  1. 2613006036; locally 8283443:
    \(\frac{PV}{T} = nR\)
    \(\frac{pdg_{7586} pdg_{8134}}{pdg_{7343}} = pdg_{2834} pdg_{8179}\)
valid 8435841627:
2613006036:
8435841627:
2613006036:
coefficient of thermal expansion using the equation of state for an ideal gas declare final expr
  1. 2472653783; locally 2491768:
    \(\alpha = \frac{1}{T}\)
    \(pdg_{4686} = \frac{1}{pdg_{7343}}\)
no validation is available for declarations 2472653783:
2472653783:
coefficient of thermal expansion using the equation of state for an ideal gas substitute LHS of expr 1 into expr 2
  1. 3497828859; locally 5927974:
    \(V = \frac{n R T}{P}\)
    \(pdg_{7586} = \frac{pdg_{2834} pdg_{7343} pdg_{8179}}{pdg_{8134}}\)
  2. 3464107376; locally 5888046:
    \(\alpha = \frac{1}{V} \left( \frac{\partial V}{\partial T} \right)_p\)
    \(pdg_{4686} = \frac{\frac{d}{d pdg_{7343}} pdg_{7586}}{pdg_{7586}}\)
  1. 1311403394; locally 7236464:
    \(\alpha = \frac{1}{V} \frac{nR}{P} \left( \frac{\partial T}{\partial T} \right)_P\)
    \(pdg_{4686} = \frac{pdg_{2834} pdg_{8179} \frac{d}{d pdg_{7343}} pdg_{7343}}{pdg_{7586} pdg_{8134}}\)
LHS diff is 0 RHS diff is -pdg2834*pdg8179/(pdg7586*pdg8134) + 1/pdg7343 3497828859:
3464107376:
1311403394:
3497828859:
3464107376:
1311403394:
equations of motion in 2D (calculus) substitute LHS of expr 1 into expr 2
  1. 6134836751; locally 8435615:
    \(v_{0, x} = v_x\)
    \(pdg_{2958} = pdg_{5505}\)
  2. 8460820419; locally 4895553:
    \(v_x = \frac{dx}{dt}\)
    \(pdg_{5505} = \frac{d}{d pdg_{1467}} pdg_{9199}\)
  1. 7455581657; locally 5123314:
    \(v_{0, x} = \frac{dx}{dt}\)
    \(pdg_{2958} = \frac{d}{d pdg_{1467}} pdg_{9199}\)
LHS diff is -pdg2958 + pdg5505 RHS diff is 0 6134836751:
8460820419:
7455581657:
6134836751:
8460820419:
7455581657:
equations of motion in 2D (calculus) declare initial expr
  1. 7252338326; locally 3936380:
    \(v_y = \frac{dy}{dt}\)
    \(pdg_{9107} = \frac{d}{d pdg_{1467}} pdg_{5647}\)
no validation is available for declarations 7252338326:
7252338326:
equations of motion in 2D (calculus) multiply both sides by
  1. 8750379055; locally 8742281:
    \(0 = \frac{d}{dt} v_x\)
    \(0 = \frac{d}{d pdg_{1467}} pdg_{5505}\)
  1. 8717193282:
    \(dt\)
    \(pdg_{4711}\)
  1. 1166310428; locally 5239397:
    \(0 dt = d v_x\)
    \(0 = pdg_{5005}\)
LHS diff is 0 RHS diff is -pdg5005 8750379055:
1166310428:
8750379055:
1166310428:
equations of motion in 2D (calculus) assume N dimensions
  1. 8880467139:
    \(2\)
    \(2\)
  1. 5349866551; locally 5359560:
    \(\vec{v} = v_x \hat{x} + v_y \hat{y}\)
    \(pdg_{6373} = pdg_{1700} pdg_{9107} + pdg_{5505} pdg_{8339}\)
no validation is available for assumptions 5349866551:
5349866551:
equations of motion in 2D (calculus) multiply both sides by
  1. 7455581657; locally 5123314:
    \(v_{0, x} = \frac{dx}{dt}\)
    \(pdg_{2958} = \frac{d}{d pdg_{1467}} pdg_{9199}\)
  1. 8607458157:
    \(dt\)
    \(pdg_{4711}\)
  1. 1963253044; locally 8062944:
    \(v_{0, x} dt = dx\)
    \(pdg_{2958} pdg_{4711} = pdg_{9199}\)
LHS diff is 0 RHS diff is -pdg9199 7455581657:
1963253044:
7455581657:
1963253044:
equations of motion in 2D (calculus) add X to both sides
  1. 9973952056; locally 1321587:
    \(-g t = v_y - v_{0, y}\)
    \(- pdg_{1467} pdg_{1649} = - pdg_{5153} + pdg_{9431}\)
  1. 4167526462:
    \(v_{0, y}\)
    \(pdg_{9431}\)
  1. 6572039835; locally 2682139:
    \(-g t + v_{0, y} = v_y\)
    \(- pdg_{1467} pdg_{1649} + pdg_{9431} = pdg_{9107}\)
LHS diff is 0 RHS diff is -pdg5153 - pdg9107 + 2*pdg9431 9973952056:
6572039835:
9973952056:
6572039835:
equations of motion in 2D (calculus) substitute LHS of expr 1 into expr 2
  1. 9707028061; locally 2060958:
    \(a_x = 0\)
    \(pdg_{7159} = 0\)
  2. 1819663717; locally 5765841:
    \(a_x = \frac{d}{dt} v_x\)
    \(pdg_{7159} = \frac{d}{d pdg_{1467}} pdg_{5505}\)
  1. 8750379055; locally 8742281:
    \(0 = \frac{d}{dt} v_x\)
    \(0 = \frac{d}{d pdg_{1467}} pdg_{5505}\)
valid 9707028061:
1819663717:
8750379055:
9707028061:
1819663717:
8750379055:
equations of motion in 2D (calculus) indefinite integration
  1. 1963253044; locally 8062944:
    \(v_{0, x} dt = dx\)
    \(pdg_{2958} pdg_{4711} = pdg_{9199}\)
  1. 3676159007; locally 2732393:
    \(v_{0, x} \int dt = \int dx\)
    \(pdg_{2958} \int 1\, dpdg_{1467} = \int 1\, dpdg_{1464}\)
no check performed 1963253044:
3676159007:
1963253044:
3676159007:
equations of motion in 2D (calculus) multiply both sides by
  1. 7376526845; locally 2378061:
    \(\sin(\theta) = \frac{v_{0, y}}{v_0}\)
    \(\sin{\left(pdg_{1575} \right)} = \frac{pdg_{5153}}{pdg_{9431}}\)
  1. 5620558729:
    \(v_0\)
    \(pdg_{5153}\)
  1. 8949329361; locally 3041148:
    \(v_0 \sin(\theta) = v_{0, y}\)
    \(pdg_{5153} \sin{\left(pdg_{1575} \right)} = pdg_{9431}\)
LHS diff is 0 RHS diff is pdg5153**2/pdg9431 - pdg9431 7376526845:
8949329361:
7376526845:
8949329361:
equations of motion in 2D (calculus) swap LHS with RHS
  1. 8486706976; locally 6277762:
    \(v_{0, x} t + x_0 = x\)
    \(pdg_{1467} pdg_{2958} + pdg_{1572} = pdg_{4037}\)
  1. 1306360899; locally 3011802:
    \(x = v_{0, x} t + x_0\)
    \(pdg_{4037} = pdg_{1467} pdg_{2958} + pdg_{1572}\)
valid 8486706976:
1306360899:
8486706976:
1306360899:
equations of motion in 2D (calculus) substitute LHS of expr 1 into expr 2
  1. 2741489181; locally 1439312:
    \(a_y = -g\)
    \(pdg_{7055} = - pdg_{1649}\)
  2. 8228733125; locally 2080932:
    \(a_y = \frac{d}{dt} v_y\)
    \(pdg_{7055} = \frac{d}{d pdg_{1467}} pdg_{9107}\)
  1. 1977955751; locally 3939933:
    \(-g = \frac{d}{dt} v_y\)
    \(- pdg_{1649} = \frac{d}{d pdg_{1467}} pdg_{9107}\)
valid 2741489181:
8228733125:
1977955751:
2741489181:
8228733125:
1977955751:
equations of motion in 2D (calculus) separate two vector components
  1. 7729413831; locally 4904941:
    \(a_x \hat{x} + a_y \hat{y} = \frac{d}{dt} \left(v_x \hat{x} + v_y \hat{y} \right)\)
    \(pdg_{1700} pdg_{7055} + pdg_{7159} pdg_{8339} = \frac{\partial}{\partial pdg_{1467}} \left(pdg_{1700} pdg_{9107} + pdg_{5505} pdg_{8339}\right)\)
  1. 1819663717; locally 5765841:
    \(a_x = \frac{d}{dt} v_x\)
    \(pdg_{7159} = \frac{d}{d pdg_{1467}} pdg_{5505}\)
  2. 8228733125; locally 2080932:
    \(a_y = \frac{d}{dt} v_y\)
    \(pdg_{7055} = \frac{d}{d pdg_{1467}} pdg_{9107}\)
no check performed 7729413831:
1819663717:
8228733125:
7729413831:
1819663717:
8228733125:
equations of motion in 2D (calculus) multiply both sides by
  1. 1977955751; locally 3939933:
    \(-g = \frac{d}{dt} v_y\)
    \(- pdg_{1649} = \frac{d}{d pdg_{1467}} pdg_{9107}\)
  1. 6672141531:
    \(dt\)
    \(pdg_{4711}\)
  1. 1702349646; locally 4777195:
    \(-g dt = d v_y\)
    \(- dt pdg_{1649} = pdg_{5674}\)
LHS diff is pdg1649*(dt - pdg4711) RHS diff is -pdg5674 1977955751:
1702349646:
1977955751:
1702349646:
equations of motion in 2D (calculus) substitute LHS of expr 1 into expr 2
  1. 6083821265; locally 6010171:
    \(v_0 \cos(\theta) = v_{0, x}\)
    \(pdg_{5153} \cos{\left(pdg_{1575} \right)} = pdg_{2958}\)
  2. 1306360899; locally 3011802:
    \(x = v_{0, x} t + x_0\)
    \(pdg_{4037} = pdg_{1467} pdg_{2958} + pdg_{1572}\)
  1. 5438722682; locally 6795282:
    \(x = v_0 t \cos(\theta) + x_0\)
    \(pdg_{4037} = pdg_{1467} pdg_{5153} \cos{\left(pdg_{1575} \right)} + pdg_{1572}\)
LHS diff is 0 RHS diff is pdg1467*(pdg2958 - pdg5153*cos(pdg1575)) 6083821265:
1306360899:
5438722682:
6083821265:
1306360899:
5438722682:
equations of motion in 2D (calculus) indefinite integration
  1. 1702349646; locally 4777195:
    \(-g dt = d v_y\)
    \(- dt pdg_{1649} = pdg_{5674}\)
  1. 8584698994; locally 3366698:
    \(-g \int dt = \int d v_y\)
    \(- dt g = pdg_{5674}\)
no check performed 1702349646:
8584698994:
1702349646:
8584698994:
equations of motion in 2D (calculus) swap LHS with RHS
  1. 2461349007; locally 7541692:
    \(- \frac{1}{2} g t^2 + v_{0, y} t + y_0 = y\)
    \(- \frac{pdg_{1467}^{2} pdg_{1649}}{2} + pdg_{1467} pdg_{9431} + pdg_{1469} = pdg_{5647}\)
  1. 1405465835; locally 1910429:
    \(y = - \frac{1}{2} g t^2 + v_{0, y} t + y_0\)
    \(pdg_{5647} = - \frac{pdg_{1467}^{2} pdg_{1649}}{2} + pdg_{1467} pdg_{9107} + pdg_{1469}\)
LHS diff is pdg1467*(-pdg9107 + pdg9431) RHS diff is pdg1467*(-pdg9107 + pdg9431) 2461349007:
1405465835:
2461349007:
1405465835:
equations of motion in 2D (calculus) add X to both sides
  1. 2858549874; locally 8638087:
    \(- \frac{1}{2} g t^2 + v_{0, y} t = y - y_0\)
    \(- \frac{pdg_{1467}^{2} pdg_{1649}}{2} + pdg_{1467} pdg_{9431} = - pdg_{1469} + pdg_{5647}\)
  1. 6098638221:
    \(y_0\)
    \(pdg_{1469}\)
  1. 2461349007; locally 7541692:
    \(- \frac{1}{2} g t^2 + v_{0, y} t + y_0 = y\)
    \(- \frac{pdg_{1467}^{2} pdg_{1649}}{2} + pdg_{1467} pdg_{9431} + pdg_{1469} = pdg_{5647}\)
valid 2858549874:
2461349007:
2858549874:
2461349007:
equations of motion in 2D (calculus) simplify
  1. 8584698994; locally 3366698:
    \(-g \int dt = \int d v_y\)
    \(- dt g = pdg_{5674}\)
  1. 9973952056; locally 1321587:
    \(-g t = v_y - v_{0, y}\)
    \(- pdg_{1467} pdg_{1649} = - pdg_{5153} + pdg_{9431}\)
LHS diff is -dt*g + pdg1467*pdg1649 RHS diff is pdg5153 + pdg5674 - pdg9431 8584698994:
9973952056:
8584698994:
9973952056:
equations of motion in 2D (calculus) declare assumption
  1. 9707028061; locally 2060958:
    \(a_x = 0\)
    \(pdg_{7159} = 0\)
no validation is available for declarations 9707028061:
9707028061:
define the orientation of the coordinate system with respect to the gravitational acceleration such that x axis is perpendicular to gravity
equations of motion in 2D (calculus) declare assumption
  1. 2741489181; locally 1439312:
    \(a_y = -g\)
    \(pdg_{7055} = - pdg_{1649}\)
no validation is available for declarations 2741489181:
2741489181:
define the orientation of the coordinate system with respect to the gravitational acceleration such that y axis is parallel to gravity
equations of motion in 2D (calculus) multiply both sides by
  1. 7391837535; locally 5523081:
    \(\cos(\theta) = \frac{v_{0, x}}{v_0}\)
    \(\cos{\left(pdg_{1575} \right)} = \frac{pdg_{5153}}{pdg_{2958}}\)
  1. 5868731041:
    \(v_0\)
    \(pdg_{5153}\)
  1. 6083821265; locally 6010171:
    \(v_0 \cos(\theta) = v_{0, x}\)
    \(pdg_{5153} \cos{\left(pdg_{1575} \right)} = pdg_{2958}\)
LHS diff is 0 RHS diff is -pdg2958 + pdg5153**2/pdg2958 7391837535:
6083821265:
7391837535:
6083821265:
equations of motion in 2D (calculus) add X to both sides
  1. 9882526611; locally 2740672:
    \(v_{0, x} t = x - x_0\)
    \(pdg_{1467} pdg_{2958} = - pdg_{1572} + pdg_{4037}\)
  1. 3182907803:
    \(x_0\)
    \(pdg_{1572}\)
  1. 8486706976; locally 6277762:
    \(v_{0, x} t + x_0 = x\)
    \(pdg_{1467} pdg_{2958} + pdg_{1572} = pdg_{4037}\)
valid 9882526611:
8486706976:
9882526611:
8486706976:
equations of motion in 2D (calculus) substitute LHS of expr 1 into expr 2
  1. 5349866551; locally 5359560:
    \(\vec{v} = v_x \hat{x} + v_y \hat{y}\)
    \(pdg_{6373} = pdg_{1700} pdg_{9107} + pdg_{5505} pdg_{8339}\)
  2. 4158986868; locally 4755350:
    \(a_x \hat{x} + a_y \hat{y} = \frac{d\vec{v}}{dt}\)
    \(pdg_{1467}\)
  1. 7729413831; locally 4904941:
    \(a_x \hat{x} + a_y \hat{y} = \frac{d}{dt} \left(v_x \hat{x} + v_y \hat{y} \right)\)
    \(pdg_{1700} pdg_{7055} + pdg_{7159} pdg_{8339} = \frac{\partial}{\partial pdg_{1467}} \left(pdg_{1700} pdg_{9107} + pdg_{5505} pdg_{8339}\right)\)
Nothing to split 5349866551:
4158986868:
7729413831:
5349866551:
4158986868:
7729413831:
equations of motion in 2D (calculus) indefinite integration
  1. 1166310428; locally 5239397:
    \(0 dt = d v_x\)
    \(0 = pdg_{5005}\)
  1. 2366691988; locally 3137944:
    \(\int 0 dt = \int d v_x\)
    \(\int 0\, dpdg_{1467} = \int 1\, dpdg_{5005}\)
no check performed 1166310428:
2366691988:
1166310428:
2366691988:
equations of motion in 2D (calculus) declare final expr
  1. 9862900242; locally 9780510:
    \(y = - \frac{1}{2} g t^2 + v_0 t \sin(\theta) + y_0\)
    \(pdg_{5647} = - \frac{pdg_{1467}^{2} pdg_{1649}}{2} + pdg_{1467} pdg_{5153} \sin{\left(pdg_{1575} \right)} + pdg_{1469}\)
no validation is available for declarations 9862900242:
9862900242:
equations of motion in 2D (calculus) declare final expr
  1. 5438722682; locally 6795282:
    \(x = v_0 t \cos(\theta) + x_0\)
    \(pdg_{4037} = pdg_{1467} pdg_{5153} \cos{\left(pdg_{1575} \right)} + pdg_{1572}\)
no validation is available for declarations 5438722682:
5438722682:
equations of motion in 2D (calculus) assume N dimensions
  1. 3270039798:
    \(2\)
    \(2\)
  1. 8602512487; locally 4862823:
    \(\vec{a} = a_x \hat{x} + a_y \hat{y}\)
    \(pdg_{2423} = pdg_{1700} pdg_{7055} + pdg_{7159} pdg_{8339}\)
no validation is available for assumptions 8602512487:
8602512487:
equations of motion in 2D (calculus) substitute LHS of expr 1 into expr 2
  1. 7252338326; locally 3936380:
    \(v_y = \frac{dy}{dt}\)
    \(pdg_{9107} = \frac{d}{d pdg_{1467}} pdg_{5647}\)
  2. 6572039835; locally 2682139:
    \(-g t + v_{0, y} = v_y\)
    \(- pdg_{1467} pdg_{1649} + pdg_{9431} = pdg_{9107}\)
  1. 6204539227; locally 5010170:
    \(-g t + v_{0, y} = \frac{dy}{dt}\)
    \(- pdg_{1467} pdg_{6277} + pdg_{9431} = \frac{d}{d pdg_{1467}} pdg_{5647}\)
LHS diff is pdg1467*(-pdg1649 + pdg6277) RHS diff is 0 7252338326:
6572039835:
6204539227:
7252338326:
6572039835:
6204539227:
equations of motion in 2D (calculus) declare initial expr
  1. 8460820419; locally 4895553:
    \(v_x = \frac{dx}{dt}\)
    \(pdg_{5505} = \frac{d}{d pdg_{1467}} pdg_{9199}\)
no validation is available for declarations 8460820419:
8460820419:
equations of motion in 2D (calculus) simplify
  1. 2366691988; locally 3137944:
    \(\int 0 dt = \int d v_x\)
    \(\int 0\, dpdg_{1467} = \int 1\, dpdg_{5005}\)
  1. 1676472948; locally 9737190:
    \(0 = v_x - v_{0, x}\)
    \(0 = - pdg_{2958} + pdg_{5505}\)
LHS diff is 0 RHS diff is pdg2958 + pdg5005 - pdg5505 2366691988:
1676472948:
2366691988:
1676472948:
equations of motion in 2D (calculus) substitute LHS of expr 1 into expr 2
  1. 3169580383; locally 6758737:
    \(\vec{a} = \frac{d\vec{v}}{dt}\)
    \(pdg_{2423} = \frac{d}{d pdg_{1467}} pdg_{6373}\)
  2. 8602512487; locally 4862823:
    \(\vec{a} = a_x \hat{x} + a_y \hat{y}\)
    \(pdg_{2423} = pdg_{1700} pdg_{7055} + pdg_{7159} pdg_{8339}\)
  1. 4158986868; locally 4755350:
    \(a_x \hat{x} + a_y \hat{y} = \frac{d\vec{v}}{dt}\)
    \(pdg_{1467}\)
Nothing to split 3169580383:
8602512487:
4158986868:
3169580383:
8602512487:
4158986868:
equations of motion in 2D (calculus) indefinite integration
  1. 8145337879; locally 5577963:
    \(-g t dt + v_{0, y} dt = dy\)
    \(- pdg_{1467} pdg_{1649} pdg_{4711} + pdg_{4711} pdg_{9431} = pdg_{5842}\)
  1. 8808860551; locally 8020644:
    \(-g \int t dt + v_{0, y} \int dt = \int dy\)
    \(- pdg_{1649} \int pdg_{1467}\, dpdg_{1467} + pdg_{9431} \int 1\, dpdg_{1467} = \int 1\, dpdg_{5647}\)
no check performed 8145337879:
8808860551:
8145337879:
8808860551:
equations of motion in 2D (calculus) separate vector into two trigonometric ratios
  1. 9341391925; locally 1381925:
    \(\vec{v}_0 = v_{0, x} \hat{x} + v_{0, y} \hat{y}\)
    \(pdg_{6091} = pdg_{1700} pdg_{9431} + pdg_{2958} pdg_{8339}\)
  1. 6410818363:
    \(\theta\)
    \(pdg_{1575}\)
  1. 7391837535; locally 5523081:
    \(\cos(\theta) = \frac{v_{0, x}}{v_0}\)
    \(\cos{\left(pdg_{1575} \right)} = \frac{pdg_{5153}}{pdg_{2958}}\)
  2. 7376526845; locally 2378061:
    \(\sin(\theta) = \frac{v_{0, y}}{v_0}\)
    \(\sin{\left(pdg_{1575} \right)} = \frac{pdg_{5153}}{pdg_{9431}}\)
no check performed 9341391925:
7391837535:
7376526845:
9341391925:
7391837535:
7376526845:
equations of motion in 2D (calculus) substitute LHS of expr 1 into expr 2
  1. 8949329361; locally 3041148:
    \(v_0 \sin(\theta) = v_{0, y}\)
    \(pdg_{5153} \sin{\left(pdg_{1575} \right)} = pdg_{9431}\)
  2. 1405465835; locally 1910429:
    \(y = - \frac{1}{2} g t^2 + v_{0, y} t + y_0\)
    \(pdg_{5647} = - \frac{pdg_{1467}^{2} pdg_{1649}}{2} + pdg_{1467} pdg_{9107} + pdg_{1469}\)
  1. 9862900242; locally 9780510:
    \(y = - \frac{1}{2} g t^2 + v_0 t \sin(\theta) + y_0\)
    \(pdg_{5647} = - \frac{pdg_{1467}^{2} pdg_{1649}}{2} + pdg_{1467} pdg_{5153} \sin{\left(pdg_{1575} \right)} + pdg_{1469}\)
LHS diff is 0 RHS diff is pdg1467*(-pdg5153*sin(pdg1575) + pdg9107) 8949329361:
1405465835:
9862900242:
8949329361:
1405465835:
9862900242:
equations of motion in 2D (calculus) simplify
  1. 8808860551; locally 8020644:
    \(-g \int t dt + v_{0, y} \int dt = \int dy\)
    \(- pdg_{1649} \int pdg_{1467}\, dpdg_{1467} + pdg_{9431} \int 1\, dpdg_{1467} = \int 1\, dpdg_{5647}\)
  1. 2858549874; locally 8638087:
    \(- \frac{1}{2} g t^2 + v_{0, y} t = y - y_0\)
    \(- \frac{pdg_{1467}^{2} pdg_{1649}}{2} + pdg_{1467} pdg_{9431} = - pdg_{1469} + pdg_{5647}\)
LHS diff is 0 RHS diff is pdg1469 8808860551:
2858549874:
8808860551:
2858549874:
equations of motion in 2D (calculus) simplify
  1. 3676159007; locally 2732393:
    \(v_{0, x} \int dt = \int dx\)
    \(pdg_{2958} \int 1\, dpdg_{1467} = \int 1\, dpdg_{1464}\)
  1. 9882526611; locally 2740672:
    \(v_{0, x} t = x - x_0\)
    \(pdg_{1467} pdg_{2958} = - pdg_{1572} + pdg_{4037}\)
LHS diff is 0 RHS diff is pdg1464 + pdg1572 - pdg4037 3676159007:
9882526611:
3676159007:
9882526611:
equations of motion in 2D (calculus) assume N dimensions
  1. 7049769409:
    \(2\)
    \(2\)
  1. 9341391925; locally 1381925:
    \(\vec{v}_0 = v_{0, x} \hat{x} + v_{0, y} \hat{y}\)
    \(pdg_{6091} = pdg_{1700} pdg_{9431} + pdg_{2958} pdg_{8339}\)
no validation is available for assumptions 9341391925:
9341391925:
equations of motion in 2D (calculus) multiply both sides by
  1. 6204539227; locally 5010170:
    \(-g t + v_{0, y} = \frac{dy}{dt}\)
    \(- pdg_{1467} pdg_{6277} + pdg_{9431} = \frac{d}{d pdg_{1467}} pdg_{5647}\)
  1. 1614343171:
    \(dt\)
    \(pdg_{4711}\)
  1. 8145337879; locally 5577963:
    \(-g t dt + v_{0, y} dt = dy\)
    \(- pdg_{1467} pdg_{1649} pdg_{4711} + pdg_{4711} pdg_{9431} = pdg_{5842}\)
LHS diff is pdg1467*pdg4711*(pdg1649 - pdg6277) RHS diff is -pdg5842 6204539227:
8145337879:
6204539227:
8145337879:
equations of motion in 2D (calculus) declare initial expr
  1. 3169580383; locally 6758737:
    \(\vec{a} = \frac{d\vec{v}}{dt}\)
    \(pdg_{2423} = \frac{d}{d pdg_{1467}} pdg_{6373}\)
no validation is available for declarations 3169580383:
3169580383:
equations of motion in 2D (calculus) add X to both sides
  1. 1676472948; locally 9737190:
    \(0 = v_x - v_{0, x}\)
    \(0 = - pdg_{2958} + pdg_{5505}\)
  1. 1439089569:
    \(v_{0, x}\)
    \(pdg_{2958}\)
  1. 6134836751; locally 8435615:
    \(v_{0, x} = v_x\)
    \(pdg_{2958} = pdg_{5505}\)
valid 1676472948:
6134836751:
1676472948:
6134836751:
angle of maximum distance for projectile motion divide both sides by
  1. 1087417579; locally 7465542:
    \(0 = - \frac{1}{2} g t_f^2 + v_0 t_f \sin(\theta)\)
    \(0 = - \frac{pdg_{1649} pdg_{2467}^{2}}{2} + pdg_{2467} pdg_{5153} \sin{\left(pdg_{1575} \right)}\)
  1. 4829590294:
    \(t_f\)
    \(pdg_{2467}\)
  1. 2086924031; locally 5115586:
    \(0 = - \frac{1}{2} g t_f + v_0 \sin(\theta)\)
    \(0 = - \frac{pdg_{1649} pdg_{2467}}{2} + pdg_{5153} \sin{\left(pdg_{1575} \right)}\)
valid 1087417579:
2086924031:
1087417579:
2086924031:
angle of maximum distance for projectile motion LHS of expr 1 equals LHS of expr 2
  1. 5379546684; locally 8592617:
    \(y_f = - \frac{1}{2} g t_f^2 + v_0 t_f \sin(\theta) + y_0\)
    \(pdg_{7092} = pdg_{1469} - \frac{pdg_{1649} pdg_{2467}^{2}}{2} + pdg_{2467} pdg_{5153} \sin{\left(pdg_{1575} \right)}\)
  2. 9112191201; locally 4911015:
    \(y_f = 0\)
    \(pdg_{7092} = 0\)
  1. 8198310977; locally 7336772:
    \(0 = - \frac{1}{2} g t_f^2 + v_0 t_f \sin(\theta) + y_0\)
    \(0 = pdg_{1469} - \frac{pdg_{1649} pdg_{2467}^{2}}{2} + pdg_{2467} pdg_{5153} \sin{\left(pdg_{1575} \right)}\)
input diff is 0 diff is -pdg1469 + pdg1649*pdg2467**2/2 - pdg2467*pdg5153*sin(pdg1575) diff is pdg1469 - pdg1649*pdg2467**2/2 + pdg2467*pdg5153*sin(pdg1575) 5379546684:
9112191201:
8198310977:
5379546684:
9112191201:
8198310977:
angle of maximum distance for projectile motion declare final expr
  1. 5353282496; locally 6972103:
    \(d = \frac{v_0^2}{g}\)
    \(pdg_{1943} = \frac{pdg_{5153}^{2}}{pdg_{1649}}\)
no validation is available for declarations 5353282496:
5353282496:
angle of maximum distance for projectile motion declare initial expr
  1. 2405307372; locally 6199255:
    \(\sin(2 x) = 2 \sin(x) \cos(x)\)
    \(\sin{\left(2 pdg_{1464} \right)} = 2 \sin{\left(pdg_{1464} \right)} \cos{\left(pdg_{1464} \right)}\)
no validation is available for declarations 2405307372:
2405307372:
angle of maximum distance for projectile motion declare initial expr
  1. 5438722682; locally 2022953:
    \(x = v_0 t \cos(\theta) + x_0\)
    \(pdg_{4037} = pdg_{1467} pdg_{5153} \cos{\left(pdg_{1575} \right)} + pdg_{1572}\)
no validation is available for declarations 5438722682:
5438722682:
angle of maximum distance for projectile motion simplify
  1. 3607070319; locally 9834994:
    \(d = \frac{v_0^2}{g} \sin\left(2 \frac{\pi}{4}\right)\)
    \(pdg_{1943} = \frac{pdg_{5153}^{2} \sin{\left(\frac{pdg_{3141}}{2} \right)}}{pdg_{1649}}\)
  1. 5353282496; locally 6972103:
    \(d = \frac{v_0^2}{g}\)
    \(pdg_{1943} = \frac{pdg_{5153}^{2}}{pdg_{1649}}\)
LHS diff is 0 RHS diff is pdg5153**2*(sin(pdg3141/2) - 1)/pdg1649 3607070319:
5353282496:
3607070319:
5353282496:
angle of maximum distance for projectile motion boundary condition
  1. 4370074654; locally 1654988:
    \(t = t_f\)
    \(pdg_{1467} = pdg_{2467}\)
  1. 2378095808; locally 5891715:
    \(x_f = x_0 + d\)
    \(pdg_{3652} = pdg_{1572} + pdg_{1943}\)
no validation is available for assumptions 4370074654:
2378095808:
4370074654:
2378095808:
angle of maximum distance for projectile motion substitute LHS of expr 1 into expr 2
  1. 2378095808; locally 5891715:
    \(x_f = x_0 + d\)
    \(pdg_{3652} = pdg_{1572} + pdg_{1943}\)
  2. 3485125659; locally 2293278:
    \(x_f = v_0 t_f \cos(\theta) + x_0\)
    \(pdg_{3652} = pdg_{1572} + pdg_{2467} pdg_{5153} \cos{\left(pdg_{1575} \right)}\)
  1. 4268085801; locally 6742208:
    \(x_0 + d = v_0 t_f \cos(\theta) + x_0\)
    \(pdg_{1572} + pdg_{1943} = pdg_{1572} + pdg_{2467} pdg_{5153} \cos{\left(pdg_{1575} \right)}\)
valid 2378095808:
3485125659:
4268085801:
2378095808:
3485125659:
4268085801:
angle of maximum distance for projectile motion subtract X from both sides
  1. 4268085801; locally 6742208:
    \(x_0 + d = v_0 t_f \cos(\theta) + x_0\)
    \(pdg_{1572} + pdg_{1943} = pdg_{1572} + pdg_{2467} pdg_{5153} \cos{\left(pdg_{1575} \right)}\)
  1. 8072682558:
    \(x_0\)
    \(pdg_{1572}\)
  1. 7233558441; locally 6756414:
    \(d = v_0 t_f \cos(\theta)\)
    \(pdg_{1943} = pdg_{2467} pdg_{5153} \cos{\left(pdg_{1575} \right)}\)
valid 4268085801:
7233558441:
4268085801:
7233558441:
angle of maximum distance for projectile motion change two variables in expr
  1. 5438722682; locally 2022953:
    \(x = v_0 t \cos(\theta) + x_0\)
    \(pdg_{4037} = pdg_{1467} pdg_{5153} \cos{\left(pdg_{1575} \right)} + pdg_{1572}\)
  1. 3273630811:
    \(x\)
    \(pdg_{4037}\)
  2. 5194141542:
    \(x_f\)
    \(pdg_{3652}\)
  3. 6732786762:
    \(t\)
    \(pdg_{1467}\)
  4. 6463266449:
    \(t_f\)
    \(pdg_{2467}\)
  1. 3485125659; locally 2293278:
    \(x_f = v_0 t_f \cos(\theta) + x_0\)
    \(pdg_{3652} = pdg_{1572} + pdg_{2467} pdg_{5153} \cos{\left(pdg_{1575} \right)}\)
valid 5438722682:
3485125659:
5438722682:
3485125659:
angle of maximum distance for projectile motion change two variables in expr
  1. 9862900242; locally 1292901:
    \(y = - \frac{1}{2} g t^2 + v_0 t \sin(\theta) + y_0\)
    \(pdg_{5647} = - \frac{pdg_{1467}^{2} pdg_{1649}}{2} + pdg_{1467} pdg_{5153} \sin{\left(pdg_{1575} \right)} + pdg_{1469}\)
  1. 8406170337:
    \(y\)
    \(pdg_{5647}\)
  2. 8120663858:
    \(y_f\)
    \(pdg_{7092}\)
  3. 2403773761:
    \(t\)
    \(pdg_{1467}\)
  4. 4162188238:
    \(t_f\)
    \(pdg_{2467}\)
  1. 5379546684; locally 8592617:
    \(y_f = - \frac{1}{2} g t_f^2 + v_0 t_f \sin(\theta) + y_0\)
    \(pdg_{7092} = pdg_{1469} - \frac{pdg_{1649} pdg_{2467}^{2}}{2} + pdg_{2467} pdg_{5153} \sin{\left(pdg_{1575} \right)}\)
valid 9862900242:
5379546684:
9862900242:
5379546684:
angle of maximum distance for projectile motion substitute LHS of expr 1 into expr 2
  1. 8198310977; locally 7336772:
    \(0 = - \frac{1}{2} g t_f^2 + v_0 t_f \sin(\theta) + y_0\)
    \(0 = pdg_{1469} - \frac{pdg_{1649} pdg_{2467}^{2}}{2} + pdg_{2467} pdg_{5153} \sin{\left(pdg_{1575} \right)}\)
  2. 1650441634; locally 2601896:
    \(y_0 = 0\)
    \(pdg_{1469} = 0\)
  1. 1087417579; locally 7465542:
    \(0 = - \frac{1}{2} g t_f^2 + v_0 t_f \sin(\theta)\)
    \(0 = - \frac{pdg_{1649} pdg_{2467}^{2}}{2} + pdg_{2467} pdg_{5153} \sin{\left(pdg_{1575} \right)}\)
LHS diff is pdg1469 RHS diff is pdg1469 8198310977:
1650441634:
1087417579:
8198310977:
1650441634:
1087417579:
angle of maximum distance for projectile motion substitute LHS of expr 1 into expr 2
  1. 2519058903; locally 7596368:
    \(\sin(2 \theta) = 2 \sin(\theta) \cos(\theta)\)
    \(\sin{\left(2 pdg_{1575} \right)} = 2 \sin{\left(pdg_{1575} \right)} \cos{\left(pdg_{1575} \right)}\)
  2. 2297105551; locally 4362314:
    \(d = v_0 \frac{2 v_0 \sin(\theta)}{g} \cos(\theta)\)
    \(pdg_{1943} = \frac{2 pdg_{5153}^{2} \sin{\left(pdg_{1575} \right)} \cos{\left(pdg_{1575} \right)}}{pdg_{1649}}\)
  1. 8922441655; locally 5129639:
    \(d = \frac{v_0^2}{g} \sin(2 \theta)\)
    \(pdg_{1943} = \frac{pdg_{5153}^{2} \sin{\left(2 pdg_{1575} \right)}}{pdg_{1649}}\)
valid 2519058903:
2297105551:
8922441655:
2519058903:
2297105551:
8922441655:
angle of maximum distance for projectile motion boundary condition
  1. 5373931751; locally 7946350:
    \(t = t_f\)
    \(pdg_{1467} = pdg_{2467}\)
  1. 9112191201; locally 4911015:
    \(y_f = 0\)
    \(pdg_{7092} = 0\)
no validation is available for assumptions 5373931751:
9112191201:
5373931751:
9112191201:
y(t_f) = y_f = 0
angle of maximum distance for projectile motion declare final expr
  1. 1541916015; locally 2728170:
    \(\theta = \frac{\pi}{4}\)
    \(pdg_{1575} = \frac{pdg_{3141}}{4}\)
no validation is available for declarations 1541916015:
1541916015:
angle of maximum distance for projectile motion multiply both sides by
  1. 1191796961; locally 3904454:
    \(\frac{1}{2} g t_f = v_0 \sin(\theta)\)
    \(\frac{pdg_{1649} pdg_{2467}}{2} = pdg_{5153} \sin{\left(pdg_{1575} \right)}\)
  1. 2510804451:
    \(2/g\)
    \(\frac{2}{pdg_{1649}}\)
  1. 4778077984; locally 8982886:
    \(t_f = \frac{2 v_0 \sin(\theta)}{g}\)
    \(pdg_{2467} = \frac{2 pdg_{5153} \sin{\left(pdg_{1575} \right)}}{pdg_{1649}}\)
valid 1191796961:
4778077984:
1191796961:
4778077984:
angle of maximum distance for projectile motion substitute LHS of expr 1 into expr 2
  1. 4778077984; locally 8982886:
    \(t_f = \frac{2 v_0 \sin(\theta)}{g}\)
    \(pdg_{2467} = \frac{2 pdg_{5153} \sin{\left(pdg_{1575} \right)}}{pdg_{1649}}\)
  2. 7233558441; locally 6756414:
    \(d = v_0 t_f \cos(\theta)\)
    \(pdg_{1943} = pdg_{2467} pdg_{5153} \cos{\left(pdg_{1575} \right)}\)
  1. 2297105551; locally 4362314:
    \(d = v_0 \frac{2 v_0 \sin(\theta)}{g} \cos(\theta)\)
    \(pdg_{1943} = \frac{2 pdg_{5153}^{2} \sin{\left(pdg_{1575} \right)} \cos{\left(pdg_{1575} \right)}}{pdg_{1649}}\)
valid 4778077984:
7233558441:
2297105551:
4778077984:
7233558441:
2297105551:
angle of maximum distance for projectile motion declare initial expr
  1. 9862900242; locally 1292901:
    \(y = - \frac{1}{2} g t^2 + v_0 t \sin(\theta) + y_0\)
    \(pdg_{5647} = - \frac{pdg_{1467}^{2} pdg_{1649}}{2} + pdg_{1467} pdg_{5153} \sin{\left(pdg_{1575} \right)} + pdg_{1469}\)
no validation is available for declarations 9862900242:
9862900242:
angle of maximum distance for projectile motion add X to both sides
  1. 2086924031; locally 5115586:
    \(0 = - \frac{1}{2} g t_f + v_0 \sin(\theta)\)
    \(0 = - \frac{pdg_{1649} pdg_{2467}}{2} + pdg_{5153} \sin{\left(pdg_{1575} \right)}\)
  1. 6974054946:
    \(\frac{1}{2} g t_f\)
    \(\frac{pdg_{1649} pdg_{2467}}{2}\)
  1. 1191796961; locally 3904454:
    \(\frac{1}{2} g t_f = v_0 \sin(\theta)\)
    \(\frac{pdg_{1649} pdg_{2467}}{2} = pdg_{5153} \sin{\left(pdg_{1575} \right)}\)
valid 2086924031:
1191796961:
2086924031:
1191796961:
angle of maximum distance for projectile motion substitute LHS of expr 1 into expr 2
  1. 1541916015; locally 2728170:
    \(\theta = \frac{\pi}{4}\)
    \(pdg_{1575} = \frac{pdg_{3141}}{4}\)
  2. 8922441655; locally 5129639:
    \(d = \frac{v_0^2}{g} \sin(2 \theta)\)
    \(pdg_{1943} = \frac{pdg_{5153}^{2} \sin{\left(2 pdg_{1575} \right)}}{pdg_{1649}}\)
  1. 3607070319; locally 9834994:
    \(d = \frac{v_0^2}{g} \sin\left(2 \frac{\pi}{4}\right)\)
    \(pdg_{1943} = \frac{pdg_{5153}^{2} \sin{\left(\frac{pdg_{3141}}{2} \right)}}{pdg_{1649}}\)
valid 1541916015:
8922441655:
3607070319:
1541916015:
8922441655:
3607070319:
angle of maximum distance for projectile motion declare assumption
  1. 1650441634; locally 2601896:
    \(y_0 = 0\)
    \(pdg_{1469} = 0\)
no validation is available for declarations 1650441634:
1650441634:
angle of maximum distance for projectile motion change variable X to Y
  1. 2405307372; locally 6199255:
    \(\sin(2 x) = 2 \sin(x) \cos(x)\)
    \(\sin{\left(2 pdg_{1464} \right)} = 2 \sin{\left(pdg_{1464} \right)} \cos{\left(pdg_{1464} \right)}\)
  1. 7587034465:
    \(\theta\)
    \(pdg_{1575}\)
  2. 7214442790:
    \(x\)
    \(pdg_{1464}\)
  1. 2519058903; locally 7596368:
    \(\sin(2 \theta) = 2 \sin(\theta) \cos(\theta)\)
    \(\sin{\left(2 pdg_{1575} \right)} = 2 \sin{\left(pdg_{1575} \right)} \cos{\left(pdg_{1575} \right)}\)
LHS diff is sin(2*pdg1464) - sin(2*pdg1575) RHS diff is sin(2*pdg1464) - sin(2*pdg1575) 2405307372:
2519058903:
2405307372:
2519058903:
angle of maximum distance for projectile motion maximum of expr
  1. 8922441655; locally 5129639:
    \(d = \frac{v_0^2}{g} \sin(2 \theta)\)
    \(pdg_{1943} = \frac{pdg_{5153}^{2} \sin{\left(2 pdg_{1575} \right)}}{pdg_{1649}}\)
  1. 5667870149:
    \(\theta\)
    \(pdg_{1575}\)
  1. 1541916015; locally 2728170:
    \(\theta = \frac{\pi}{4}\)
    \(pdg_{1575} = \frac{pdg_{3141}}{4}\)
no check performed 8922441655:
1541916015:
8922441655:
1541916015:
Newton's Law of Gravitation substitute LHS of two expressions into expr
  1. 4264859781; locally 8320848:
    \(F \propto m_1\)
    \(F pdg_{5022} propto\)
  2. 4490788873; locally 5440061:
    \(F \propto m_2\)
    \(F pdg_{4851} propto\)
  3. 1571582377; locally 6174613:
    \(F_{gravitational} \propto \frac{1}{r^2}\)
    \(pdg_{2867} = \frac{k}{pdg_{2530}^{2}}\)
  1. 3650814381; locally 1206000:
    \(F_{gravitational} \propto \frac{m_1 m_2}{r^2}\)
    \(\frac{pdg_{2867} pdg_{4851} pdg_{5022} propto}{pdg_{2530}^{2}}\)
Nothing to split 4264859781:
4490788873:
1571582377:
3650814381:
4264859781:
4490788873:
1571582377:
3650814381:
Newton's Law of Gravitation substitute LHS of expr 1 into expr 2
  1. 6026694087; locally 3755872:
    \(F_{centripetal} = m \frac{v^2}{r}\)
    \(pdg_{1687} = \frac{pdg_{5156} v^{2}}{pdg_{2530}}\)
  2. 4820320578; locally 5891249:
    \(F_{gravitational} = F_{centripetal}\)
    \(pdg_{2867} = pdg_{1687}\)
  1. 4267808354; locally 2239910:
    \(F_{gravitational} = m \frac{v^2}{r}\)
    \(pdg_{2867} = \frac{pdg_{1357}^{2} pdg_{5156}}{pdg_{2530}}\)
LHS diff is 0 RHS diff is pdg5156*(-pdg1357**2 + v**2)/pdg2530 6026694087:
4820320578:
4267808354:
6026694087:
4820320578:
4267808354:
Newton's Law of Gravitation declare initial expr
  1. 6785303857; locally 5154120:
    \(C = 2 \pi r\)
    \(pdg_{3034} = 2 pdg_{2530} pdg_{3141}\)
no validation is available for declarations 6785303857:
6785303857:
Newton's Law of Gravitation declare initial expr
  1. 3411994811; locally 9055493:
    \(v_{\rm average} = \frac{d}{t}\)
    \(pdg_{6709} = \frac{pdg_{1943}}{pdg_{1467}}\)
no validation is available for declarations 3411994811:
3411994811:
Newton's Law of Gravitation declare assumption
  1. 4820320578; locally 5891249:
    \(F_{gravitational} = F_{centripetal}\)
    \(pdg_{2867} = pdg_{1687}\)
no validation is available for declarations 4820320578:
4820320578:
Newton's Law of Gravitation declare final expr
  1. 1292735067; locally 8373934:
    \(F_{gravitational} = G \frac{m_1 m_2}{r^2}\)
    \(pdg_{2867} = \frac{pdg_{4851} pdg_{5022} pdg_{6277}}{pdg_{2530}^{2}}\)
no validation is available for declarations 1292735067:
1292735067:
Newton's Law of Gravitation substitute LHS of expr 1 into expr 2
  1. 8361238989; locally 6969192:
    \(a_{centripetal} = \frac{v^2}{r}\)
    \(a_{c*(e*(n*(t*(r*(i*(p*(e*(t*(a*l)))))))))} = \frac{pdg_{1357}^{2}}{pdg_{2530}}\)
  2. 5345738321; locally 2020292:
    \(F = m a\)
    \(pdg_{4202} = pdg_{5156} pdg_{9140}\)
  1. 6026694087; locally 3755872:
    \(F_{centripetal} = m \frac{v^2}{r}\)
    \(pdg_{1687} = \frac{pdg_{5156} v^{2}}{pdg_{2530}}\)
LHS diff is -pdg1687 + pdg4202 RHS diff is pdg5156*(pdg2530*pdg9140 - v**2)/pdg2530 8361238989:
5345738321:
6026694087:
8361238989:
5345738321:
6026694087:
Newton's Law of Gravitation simplify
  1. 3004158505; locally 4470678:
    \(\frac{T^2}{r} F_{gravitational} = \left( \frac{4 \pi^2 m r}{T^2} \right)\frac{T^2}{r}\)
    \(\frac{pdg_{2867} pdg_{8762}^{2}}{pdg_{2530}} = 4 pdg_{3141}^{2} pdg_{5156}\)
  1. 3650370389; locally 7324555:
    \(\frac{T^2}{r} F_{gravitational} = 4 \pi^2 m\)
    \(\frac{pdg_{2867} pdg_{8762}^{2}}{pdg_{2530}} = 4 pdg_{3141}^{2} pdg_{5156}\)
valid 3004158505:
3650370389:
3004158505:
3650370389:
Newton's Law of Gravitation substitute LHS of expr 1 into expr 2
  1. 6785303857; locally 5154120:
    \(C = 2 \pi r\)
    \(pdg_{3034} = 2 pdg_{2530} pdg_{3141}\)
  2. 3411994811; locally 9055493:
    \(v_{\rm average} = \frac{d}{t}\)
    \(pdg_{6709} = \frac{pdg_{1943}}{pdg_{1467}}\)
  1. 5177311762; locally 7653722:
    \(v = \frac{2 \pi r}{T}\)
    \(pdg_{1357} = \frac{2 pdg_{2530} pdg_{3141}}{pdg_{8762}}\)
LHS diff is -pdg1357 + pdg6709 RHS diff is -2*pdg2530*pdg3141/pdg8762 + pdg1943/pdg1467 6785303857:
3411994811:
5177311762:
6785303857:
3411994811:
5177311762:
Newton's Law of Gravitation change variable X to Y
  1. 1848400430; locally 5546471:
    \(F \propto m\)
    \(F pdg_{5156} propto\)
  1. 3876446703:
    \(m\)
    \(pdg_{5156}\)
  2. 7905984866:
    \(m_1\)
    \(pdg_{5022}\)
  1. 4264859781; locally 8320848:
    \(F \propto m_1\)
    \(F pdg_{5022} propto\)
Nothing to split 1848400430:
4264859781:
1848400430:
4264859781:
Newton's Law of Gravitation simplify
  1. 3650814381; locally 1206000:
    \(F_{gravitational} \propto \frac{m_1 m_2}{r^2}\)
    \(\frac{pdg_{2867} pdg_{4851} pdg_{5022} propto}{pdg_{2530}^{2}}\)
  1. 1292735067; locally 8373934:
    \(F_{gravitational} = G \frac{m_1 m_2}{r^2}\)
    \(pdg_{2867} = \frac{pdg_{4851} pdg_{5022} pdg_{6277}}{pdg_{2530}^{2}}\)
Nothing to split 3650814381:
1292735067:
3650814381:
1292735067:
Newton's Law of Gravitation simplify
  1. 6268336290; locally 9170078:
    \(F_{gravitational} = \frac{m}{r}\left(\frac{2\pi r}{T}\right)^2\)
    \(pdg_{2867} = \frac{4 pdg_{2530} pdg_{3141}^{2} pdg_{4851}}{pdg_{8762}^{2}}\)
  1. 7672365885; locally 5175707:
    \(F_{gravitational} = \frac{4 \pi^2 m r}{T^2}\)
    \(pdg_{2867} = \frac{4 pdg_{2530} pdg_{3141}^{2} pdg_{4851}}{pdg_{8762}^{2}}\)
valid 6268336290:
7672365885:
6268336290:
7672365885:
Newton's Law of Gravitation multiply both sides by
  1. 7672365885; locally 5175707:
    \(F_{gravitational} = \frac{4 \pi^2 m r}{T^2}\)
    \(pdg_{2867} = \frac{4 pdg_{2530} pdg_{3141}^{2} pdg_{4851}}{pdg_{8762}^{2}}\)
  1. 3448601530:
    \(\frac{T^2}{r}\)
    \(\frac{pdg_{9491}^{2}}{pdg_{2530}}\)
  1. 3004158505; locally 4470678:
    \(\frac{T^2}{r} F_{gravitational} = \left( \frac{4 \pi^2 m r}{T^2} \right)\frac{T^2}{r}\)
    \(\frac{pdg_{2867} pdg_{8762}^{2}}{pdg_{2530}} = 4 pdg_{3141}^{2} pdg_{5156}\)
LHS diff is pdg2867*(-pdg8762**2 + pdg9491**2)/pdg2530 RHS diff is 4*pdg3141**2*(pdg4851*pdg9491**2 - pdg5156*pdg8762**2)/pdg8762**2 7672365885:
3004158505:
7672365885:
3004158505:
Newton's Law of Gravitation declare initial expr
  1. 5345738321; locally 2020292:
    \(F = m a\)
    \(pdg_{4202} = pdg_{5156} pdg_{9140}\)
no validation is available for declarations 5345738321:
5345738321:
Newton's Law of Gravitation declare initial expr
  1. 8361238989; locally 6969192:
    \(a_{centripetal} = \frac{v^2}{r}\)
    \(a_{c*(e*(n*(t*(r*(i*(p*(e*(t*(a*l)))))))))} = \frac{pdg_{1357}^{2}}{pdg_{2530}}\)
no validation is available for declarations 8361238989:
8361238989:
Newton's Law of Gravitation change variable X to Y
  1. 1848400430; locally 5546471:
    \(F \propto m\)
    \(F pdg_{5156} propto\)
  1. 2346952973:
    \(m\)
    \(pdg_{5156}\)
  2. 9594072504:
    \(m_2\)
    \(pdg_{4851}\)
  1. 4490788873; locally 5440061:
    \(F \propto m_2\)
    \(F pdg_{4851} propto\)
Nothing to split 1848400430:
4490788873:
1848400430:
4490788873:
Newton's Law of Gravitation substitute LHS of expr 1 into expr 2
  1. 5177311762; locally 7653722:
    \(v = \frac{2 \pi r}{T}\)
    \(pdg_{1357} = \frac{2 pdg_{2530} pdg_{3141}}{pdg_{8762}}\)
  2. 4267808354; locally 2239910:
    \(F_{gravitational} = m \frac{v^2}{r}\)
    \(pdg_{2867} = \frac{pdg_{1357}^{2} pdg_{5156}}{pdg_{2530}}\)
  1. 6268336290; locally 9170078:
    \(F_{gravitational} = \frac{m}{r}\left(\frac{2\pi r}{T}\right)^2\)
    \(pdg_{2867} = \frac{4 pdg_{2530} pdg_{3141}^{2} pdg_{4851}}{pdg_{8762}^{2}}\)
LHS diff is 0 RHS diff is 4*pdg2530*pdg3141**2*(-pdg4851 + pdg5156)/pdg8762**2 5177311762:
4267808354:
6268336290:
5177311762:
4267808354:
6268336290:
Newton's Law of Gravitation declare guess solution
  1. 3650370389; locally 7324555:
    \(\frac{T^2}{r} F_{gravitational} = 4 \pi^2 m\)
    \(\frac{pdg_{2867} pdg_{8762}^{2}}{pdg_{2530}} = 4 pdg_{3141}^{2} pdg_{5156}\)
  1. 1571582377; locally 6174613:
    \(F_{gravitational} \propto \frac{1}{r^2}\)
    \(pdg_{2867} = \frac{k}{pdg_{2530}^{2}}\)
no validation is available for declarations 3650370389:
1571582377:
3650370389:
1571582377:
this is a big leap of logic that is consistent with Kepler's third law of motion
Newton's Law of Gravitation simplify
  1. 5345738321; locally 2020292:
    \(F = m a\)
    \(pdg_{4202} = pdg_{5156} pdg_{9140}\)
  1. 1848400430; locally 5546471:
    \(F \propto m\)
    \(F pdg_{5156} propto\)
Nothing to split 5345738321:
1848400430:
5345738321:
1848400430:
radius for satellite in geostationary orbit change four variables in expr
  1. 9226945488; locally 8242154:
    \(F = \frac{m v^2}{r}\)
    \(pdg_{4202} = \frac{pdg_{1357}^{2} pdg_{5156}}{pdg_{2530}}\)
  1. 5089196493:
    \(F\)
    \(pdg_{4202}\)
  2. 1333474099:
    \(F_{\rm centripetal}\)
    \(pdg_{1687}\)
  3. 3342155559:
    \(m\)
    \(pdg_{5156}\)
  4. 2114570475:
    \(m_{\rm satellite}\)
    \(pdg_{3569}\)
  5. 7912578203:
    \(v\)
    \(pdg_{1357}\)
  6. 9789485295:
    \(v_{\rm satellite}\)
    \(pdg_{4082}\)
  1. 4627284246; locally 6845877:
    \(F_{\rm centripetal} = \frac{m_{\rm satellite} v_{\rm satellite}^2}{r}\)
    \(pdg_{1687} = \frac{pdg_{3569} pdg_{4082}^{2}}{pdg_{2530}}\)
failed 9226945488:
4627284246:
9226945488:
4627284246:
radius for satellite in geostationary orbit multiply both sides by
  1. 3906710072; locally 2871066:
    \(G \frac{m_{\rm Earth}}{r} = \frac{4 \pi^2 r^2}{T_{\rm orbit}^2}\)
    \(\frac{pdg_{5458} pdg_{6277}}{pdg_{2530}} = \frac{4 pdg_{2530}^{2} pdg_{3141}^{2}}{pdg_{8762}^{2}}\)
  1. 6238632840:
    \(r T_{\rm orbit}^2\)
    \(pdg_{2530} pdg_{8762}^{2}\)
  1. 7010294143; locally 7188516:
    \(T_{\rm orbit}^2 G m_{\rm Earth} = 4 \pi^2 r^3\)
    \(pdg_{5458} pdg_{6277} pdg_{8762}^{2} = 4 pdg_{2530}^{3} pdg_{3141}^{2}\)
valid 3906710072:
7010294143:
3906710072:
7010294143:
radius for satellite in geostationary orbit raise both sides to power
  1. 4858693811; locally 6238570:
    \(\frac{T_{\rm orbit}^2 G m_{\rm Earth}}{4 \pi^2} = r^3\)
    \(\frac{pdg_{5458} pdg_{6277} pdg_{8762}^{2}}{4 pdg_{3141}^{2}} = pdg_{2530}^{3}\)
  1. 4319544433:
    \(1/3\)
    \(\frac{1}{3}\)
  1. 2617541067; locally 7139326:
    \(\left(\frac{T_{\rm orbit}^2 G m_{\rm Earth}}{4 \pi^2}\right)^{1/3} = r\)
    \(\frac{\sqrt[3]{2} \sqrt[3]{\frac{pdg_{5458} pdg_{6277} pdg_{8762}^{2}}{pdg_{3141}^{2}}}}{2} = pdg_{2530}\)
no check is performed 4858693811:
2617541067:
4858693811:
2617541067:
radius for satellite in geostationary orbit divide both sides by
  1. 4072200527; locally 4948724:
    \(\frac{m_{\rm satellite} v_{\rm satellite}^2}{r} = G \frac{m_{\rm Earth} m_{\rm satellite}}{r^2}\)
    \(\frac{pdg_{3569} pdg_{4082}^{2}}{pdg_{2530}} = \frac{pdg_{3569} pdg_{5458} pdg_{6277}}{pdg_{2530}^{2}}\)
  1. 5359471792:
    \(\frac{m_{\rm satellite}}{r}\)
    \(\frac{pdg_{3569}}{pdg_{2530}}\)
  1. 1994296484; locally 2009493:
    \(v_{\rm satellite}^2 = G \frac{m_{\rm Earth}}{r}\)
    \(pdg_{4082}^{2} = \frac{pdg_{5458} pdg_{6277}}{pdg_{2530}}\)
valid 4072200527:
1994296484:
4072200527:
1994296484:
radius for satellite in geostationary orbit change two variables in expr
  1. 2617541067; locally 7139326:
    \(\left(\frac{T_{\rm orbit}^2 G m_{\rm Earth}}{4 \pi^2}\right)^{1/3} = r\)
    \(\frac{\sqrt[3]{2} \sqrt[3]{\frac{pdg_{5458} pdg_{6277} pdg_{8762}^{2}}{pdg_{3141}^{2}}}}{2} = pdg_{2530}\)
  1. 3846345263:
    \(T_{\rm orbit}\)
    \(pdg_{8762}\)
  2. 5208737840:
    \(T_{\rm geostationary\ orbit}\)
    \(pdg_{5595}\)
  3. 5770088141:
    \(r\)
    \(pdg_{2530}\)
  4. 7053449926:
    \(r_{\rm geostationary\ orbit}\)
    \(pdg_{7110}\)
  1. 1559688463; locally 4507350:
    \(\left(\frac{T_{\rm geostationary\ orbit}^2 G m_{\rm Earth}}{4 \pi^2}\right)^{1/3} = r_{\rm geostationary\ orbit}\)
    \(\frac{\sqrt[3]{2} \sqrt[3]{\frac{pdg_{5458} pdg_{5595}^{2} pdg_{6277}}{pdg_{3141}^{2}}}}{2} = pdg_{7110}\)
valid 2617541067:
1559688463:
2617541067:
1559688463:
radius for satellite in geostationary orbit substitute LHS of expr 1 into expr 2
  1. 9262596735; locally 5369477:
    \(d = 2 \pi r\)
    \(pdg_{1943} = 2 pdg_{2530} pdg_{3141}\)
  2. 5426308937; locally 5114041:
    \(v = \frac{d}{t}\)
    \(pdg_{1357} = \frac{pdg_{1943}}{pdg_{1467}}\)
  1. 4245712581; locally 8090893:
    \(v = \frac{2 \pi r}{t}\)
    \(pdg_{1357} = \frac{2 pdg_{2530} pdg_{3141}}{pdg_{1467}}\)
valid 9262596735:
5426308937:
4245712581:
9262596735:
5426308937:
4245712581:
radius for satellite in geostationary orbit change four variables in expr
  1. 6935745841; locally 2820438:
    \(F = G \frac{m_1 m_2}{x^2}\)
    \(pdg_{4202} = \frac{pdg_{4851} pdg_{5022} pdg_{6277}}{pdg_{4037}^{2}}\)
  1. 3398368564:
    \(F\)
    \(pdg_{4202}\)
  2. 3594626260:
    \(F_{\rm gravity}\)
    \(pdg_{2867}\)
  3. 9794128647:
    \(m_1\)
    \(pdg_{5458}\)
  4. 4153613253:
    \(m_{\rm Earth}\)
    \(pdg_{5458}\)
  5. 3088463019:
    \(m_2\)
    \(pdg_{4851}\)
  6. 3486213448:
    \(m_{\rm satellite}\)
    \(pdg_{3569}\)
  7. 4830480629:
    \(x\)
    \(pdg_{4037}\)
  8. 7819443873:
    \(r\)
    \(pdg_{2530}\)
  1. 5563580265; locally 1917654:
    \(F_{\rm gravity} = G \frac{m_{\rm Earth} m_{\rm satellite}}{r^2}\)
    \(pdg_{2867} = \frac{pdg_{3569} pdg_{5458} pdg_{6277}}{pdg_{2530}^{2}}\)
LHS diff is 0 RHS diff is pdg3569*pdg6277*(pdg5022 - pdg5458)/pdg2530**2 6935745841:
5563580265:
6935745841:
5563580265:
radius for satellite in geostationary orbit change variable X to Y
  1. 4245712581; locally 8090893:
    \(v = \frac{2 \pi r}{t}\)
    \(pdg_{1357} = \frac{2 pdg_{2530} pdg_{3141}}{pdg_{1467}}\)
  1. 3722461713:
    \(t\)
    \(pdg_{1467}\)
  2. 9346215480:
    \(T_{\rm orbit}\)
    \(pdg_{8762}\)
  1. 3614055652; locally 2392562:
    \(v = \frac{2 \pi r}{T_{\rm orbit}}\)
    \(pdg_{1357} = \frac{2 pdg_{2530} pdg_{3141}}{pdg_{8762}}\)
valid 4245712581:
3614055652:
4245712581:
3614055652:
radius for satellite in geostationary orbit raise both sides to power
  1. 3614055652; locally 2392562:
    \(v = \frac{2 \pi r}{T_{\rm orbit}}\)
    \(pdg_{1357} = \frac{2 pdg_{2530} pdg_{3141}}{pdg_{8762}}\)
  1. 2754264786:
    \(2\)
    \(2\)
  1. 8059639673; locally 6390693:
    \(v^2 = \frac{4 \pi^2 r^2}{T_{\rm orbit}^2}\)
    \(pdg_{1357}^{2} = \frac{4 pdg_{2530}^{2} pdg_{3141}^{2}}{pdg_{8762}^{2}}\)
no check is performed 3614055652:
8059639673:
3614055652:
8059639673:
radius for satellite in geostationary orbit LHS of expr 1 equals LHS of expr 2
  1. 1994296484; locally 2009493:
    \(v_{\rm satellite}^2 = G \frac{m_{\rm Earth}}{r}\)
    \(pdg_{4082}^{2} = \frac{pdg_{5458} pdg_{6277}}{pdg_{2530}}\)
  2. 8059639673; locally 6390693:
    \(v^2 = \frac{4 \pi^2 r^2}{T_{\rm orbit}^2}\)
    \(pdg_{1357}^{2} = \frac{4 pdg_{2530}^{2} pdg_{3141}^{2}}{pdg_{8762}^{2}}\)
  1. 3906710072; locally 2871066:
    \(G \frac{m_{\rm Earth}}{r} = \frac{4 \pi^2 r^2}{T_{\rm orbit}^2}\)
    \(\frac{pdg_{5458} pdg_{6277}}{pdg_{2530}} = \frac{4 pdg_{2530}^{2} pdg_{3141}^{2}}{pdg_{8762}^{2}}\)
input diff is -pdg1357**2 + pdg4082**2 diff is 0 diff is 0 1994296484:
8059639673:
3906710072:
1994296484:
8059639673:
3906710072:
radius for satellite in geostationary orbit declare assumption
  1. 3920616792; locally 9978909:
    \(T_{\rm geostationary orbit} = 24\ {\rm hours}\)
    \(pdg_{5595}\)
no validation is available for declarations 3920616792:
3920616792:
radius for satellite in geostationary orbit substitute LHS of two expressions into expr
  1. 5563580265; locally 1917654:
    \(F_{\rm gravity} = G \frac{m_{\rm Earth} m_{\rm satellite}}{r^2}\)
    \(pdg_{2867} = \frac{pdg_{3569} pdg_{5458} pdg_{6277}}{pdg_{2530}^{2}}\)
  2. 4627284246; locally 6845877:
    \(F_{\rm centripetal} = \frac{m_{\rm satellite} v_{\rm satellite}^2}{r}\)
    \(pdg_{1687} = \frac{pdg_{3569} pdg_{4082}^{2}}{pdg_{2530}}\)
  3. 3176662571; locally 2154616:
    \(F_{\rm centripetal} = F_{\rm gravity}\)
    \(pdg_{2867} = pdg_{1687}\)
  1. 4072200527; locally 4948724:
    \(\frac{m_{\rm satellite} v_{\rm satellite}^2}{r} = G \frac{m_{\rm Earth} m_{\rm satellite}}{r^2}\)
    \(\frac{pdg_{3569} pdg_{4082}^{2}}{pdg_{2530}} = \frac{pdg_{3569} pdg_{5458} pdg_{6277}}{pdg_{2530}^{2}}\)
failed 5563580265:
4627284246:
3176662571:
4072200527:
5563580265:
4627284246:
3176662571:
4072200527:
radius for satellite in geostationary orbit divide both sides by
  1. 7010294143; locally 7188516:
    \(T_{\rm orbit}^2 G m_{\rm Earth} = 4 \pi^2 r^3\)
    \(pdg_{5458} pdg_{6277} pdg_{8762}^{2} = 4 pdg_{2530}^{3} pdg_{3141}^{2}\)
  1. 7556442438:
    \(4 \pi^2\)
    \(4 pdg_{3141}^{2}\)
  1. 4858693811; locally 6238570:
    \(\frac{T_{\rm orbit}^2 G m_{\rm Earth}}{4 \pi^2} = r^3\)
    \(\frac{pdg_{5458} pdg_{6277} pdg_{8762}^{2}}{4 pdg_{3141}^{2}} = pdg_{2530}^{3}\)
valid 7010294143:
4858693811:
7010294143:
4858693811:
radius for satellite in geostationary orbit declare initial expr
  1. 9226945488; locally 8242154:
    \(F = \frac{m v^2}{r}\)
    \(pdg_{4202} = \frac{pdg_{1357}^{2} pdg_{5156}}{pdg_{2530}}\)
no validation is available for declarations 9226945488:
9226945488:
radius for satellite in geostationary orbit change variable X to Y
  1. 6785303857; locally 1115424:
    \(C = 2 \pi r\)
    \(pdg_{3034} = 2 pdg_{2530} pdg_{3141}\)
  1. 1823570358:
    \(C\)
    \(pdg_{3034}\)
  2. 3236313290:
    \(d\)
    \(pdg_{1943}\)
  1. 9262596735; locally 5369477:
    \(d = 2 \pi r\)
    \(pdg_{1943} = 2 pdg_{2530} pdg_{3141}\)
valid 6785303857:
9262596735:
6785303857:
9262596735:
radius for satellite in geostationary orbit declare assumption
  1. 3176662571; locally 2154616:
    \(F_{\rm centripetal} = F_{\rm gravity}\)
    \(pdg_{2867} = pdg_{1687}\)
no validation is available for declarations 3176662571:
3176662571:
equations of motion in 1D with constant acceleration - SUVAT (algebra) swap LHS with RHS
  1. 9759901995; locally 4127918:
    \(v - v_0 = a t\)
    \(pdg_{1357} - pdg_{5153} = pdg_{1467} pdg_{9140}\)
  1. 4748157455; locally 5666935:
    \(a t = v - v_0\)
    \(pdg_{1467} pdg_{9140} = pdg_{1357} - pdg_{5153}\)
valid 9759901995:
4748157455:
9759901995:
4748157455:
equations of motion in 1D with constant acceleration - SUVAT (algebra) simplify
  1. 4580545876; locally 8442394:
    \(d = v t - a t^2 + \frac{1}{2} a t^2\)
    \(pdg_{1943} = pdg_{1357} pdg_{1467} - \frac{pdg_{1467}^{2} pdg_{9140}}{2}\)
  1. 6421241247; locally 3917794:
    \(d = v t - \frac{1}{2} a t^2\)
    \(pdg_{1943} = pdg_{1357} pdg_{1467} - \frac{pdg_{1467}^{2} pdg_{9140}}{2}\)
valid 4580545876:
6421241247:
4580545876:
6421241247:
equations of motion in 1D with constant acceleration - SUVAT (algebra) declare initial expr
  1. 3366703541; locally 7864125:
    \(a = \frac{v - v_0}{t}\)
    \(pdg_{9140} = \frac{pdg_{1357} - pdg_{5153}}{pdg_{1467}}\)
no validation is available for declarations 3366703541:
3366703541:
equations of motion in 1D with constant acceleration - SUVAT (algebra) add X to both sides
  1. 4748157455; locally 5666935:
    \(a t = v - v_0\)
    \(pdg_{1467} pdg_{9140} = pdg_{1357} - pdg_{5153}\)
  1. 6417359412:
    \(v_0\)
    \(pdg_{5153}\)
  1. 4798787814; locally 3386860:
    \(a t + v_0 = v\)
    \(pdg_{1467} pdg_{9140} + pdg_{5153} = pdg_{1357}\)
valid 4748157455:
4798787814:
4748157455:
4798787814:
equations of motion in 1D with constant acceleration - SUVAT (algebra) declare final expr
  1. 3462972452; locally 8873965:
    \(v = v_0 + a t\)
    \(pdg_{1357} = pdg_{1467} pdg_{9140} + pdg_{5153}\)
no validation is available for declarations 3462972452:
3462972452:
equations of motion in 1D with constant acceleration - SUVAT (algebra) raise both sides to power
  1. 3462972452; locally 8873965:
    \(v = v_0 + a t\)
    \(pdg_{1357} = pdg_{1467} pdg_{9140} + pdg_{5153}\)
  1. 5799753649:
    \(2\)
    \(2\)
  1. 7215099603; locally 4385757:
    \(v^2 = v_0^2 + 2 a t v_0 + a^2 t^2\)
    \(pdg_{1357}^{2} = pdg_{1467}^{2} pdg_{9140}^{2} + 2 pdg_{1467} pdg_{5153} pdg_{9140} + pdg_{5153}^{2}\)
no check is performed 3462972452:
7215099603:
3462972452:
7215099603:
equations of motion in 1D with constant acceleration - SUVAT (algebra) divide both sides by
  1. 4748157455; locally 5666935:
    \(a t = v - v_0\)
    \(pdg_{1467} pdg_{9140} = pdg_{1357} - pdg_{5153}\)
  1. 2242144313:
    \(a\)
    \(pdg_{9140}\)
  1. 1967582749; locally 8222540:
    \(t = \frac{v - v_0}{a}\)
    \(pdg_{1467} = \frac{pdg_{1357} - pdg_{5153}}{pdg_{9140}}\)
valid 4748157455:
1967582749:
4748157455:
1967582749:
equations of motion in 1D with constant acceleration - SUVAT (algebra) simplify
  1. 1265150401; locally 6881977:
    \(d = \frac{2 v_0 + a t}{2} t\)
    \(pdg_{1943} = pdg_{1467} \left(\frac{pdg_{1467} pdg_{9140}}{2} + pdg_{5153}\right)\)
  1. 9658195023; locally 5385244:
    \(d = v_0 t + \frac{1}{2} a t^2\)
    \(pdg_{1943} = \frac{pdg_{1467}^{2} pdg_{9140}}{2} + pdg_{1467} pdg_{5153}\)
valid 1265150401:
9658195023:
1265150401:
9658195023:
equations of motion in 1D with constant acceleration - SUVAT (algebra) declare final expr
  1. 6421241247; locally 3917794:
    \(d = v t - \frac{1}{2} a t^2\)
    \(pdg_{1943} = pdg_{1357} pdg_{1467} - \frac{pdg_{1467}^{2} pdg_{9140}}{2}\)
no validation is available for declarations 6421241247:
6421241247:
equations of motion in 1D with constant acceleration - SUVAT (algebra) substitute RHS of expr 1 into expr 2
  1. 1967582749; locally 8222540:
    \(t = \frac{v - v_0}{a}\)
    \(pdg_{1467} = \frac{pdg_{1357} - pdg_{5153}}{pdg_{9140}}\)
  2. 8706092970; locally 1476448:
    \(d = \left(\frac{v + v_0}{2}\right)t\)
    \(pdg_{1943} = pdg_{1467} \left(\frac{pdg_{1357}}{2} + \frac{pdg_{5153}}{2}\right)\)
  1. 5733721198; locally 9270356:
    \(d = \frac{1}{2} (v + v_0) \left( \frac{v - v_0}{a} \right)\)
    \(pdg_{1943} = \frac{\left(pdg_{1357} - pdg_{5153}\right) \left(pdg_{1357} + pdg_{5153}\right)}{2 pdg_{9140}}\)
LHS diff is 0 RHS diff is (pdg1357 + pdg5153)*(-pdg1357 + pdg1467*pdg9140 + pdg5153)/(2*pdg9140) 1967582749:
8706092970:
5733721198:
1967582749:
8706092970:
5733721198:
equations of motion in 1D with constant acceleration - SUVAT (algebra) declare final expr
  1. 9658195023; locally 5385244:
    \(d = v_0 t + \frac{1}{2} a t^2\)
    \(pdg_{1943} = \frac{pdg_{1467}^{2} pdg_{9140}}{2} + pdg_{1467} pdg_{5153}\)
no validation is available for declarations 9658195023:
9658195023:
equations of motion in 1D with constant acceleration - SUVAT (algebra) add X to both sides
  1. 8269198922; locally 6814979:
    \(2 a d = v^2 - v_0^2\)
    \(2 pdg_{1943} pdg_{9140} = pdg_{1357}^{2} - pdg_{5153}^{2}\)
  1. 9070454719:
    \(v_0^2\)
    \(pdg_{5153}^{2}\)
  1. 4948763856; locally 7086842:
    \(2 a d + v_0^2 = v^2\)
    \(2 pdg_{1943} pdg_{9140} + pdg_{5153}^{2} = pdg_{1357}^{2}\)
valid 8269198922:
4948763856:
8269198922:
4948763856:
equations of motion in 1D with constant acceleration - SUVAT (algebra) substitute RHS of expr 1 into expr 2
  1. 5144263777; locally 9796063:
    \(v^2 = v_0^2 + 2 a \left( v_0 t +\frac{1}{2} a t^2 \right)\)
    \(pdg_{1357}\)
  2. 9658195023; locally 5385244:
    \(d = v_0 t + \frac{1}{2} a t^2\)
    \(pdg_{1943} = \frac{pdg_{1467}^{2} pdg_{9140}}{2} + pdg_{1467} pdg_{5153}\)
  1. 7939765107; locally 7702534:
    \(v^2 = v_0^2 + 2 a d\)
    \(pdg_{1357}^{2} = 2 pdg_{1943} pdg_{9140} + pdg_{5153}^{2}\)
Nothing to split 5144263777:
9658195023:
7939765107:
5144263777:
9658195023:
7939765107:
equations of motion in 1D with constant acceleration - SUVAT (algebra) multiply both sides by
  1. 9897284307; locally 4622149:
    \(\frac{d}{t} = \frac{v + v_0}{2}\)
    \(\frac{pdg_{1943}}{pdg_{1467}} = \frac{pdg_{1357}}{2} + \frac{pdg_{5153}}{2}\)
  1. 8865085668:
    \(t\)
    \(pdg_{1467}\)
  1. 8706092970; locally 1476448:
    \(d = \left(\frac{v + v_0}{2}\right)t\)
    \(pdg_{1943} = pdg_{1467} \left(\frac{pdg_{1357}}{2} + \frac{pdg_{5153}}{2}\right)\)
valid 9897284307:
8706092970:
9897284307:
8706092970:
equations of motion in 1D with constant acceleration - SUVAT (algebra) declare final expr
  1. 7939765107; locally 7702534:
    \(v^2 = v_0^2 + 2 a d\)
    \(pdg_{1357}^{2} = 2 pdg_{1943} pdg_{9140} + pdg_{5153}^{2}\)
no validation is available for declarations 7939765107:
7939765107:
equations of motion in 1D with constant acceleration - SUVAT (algebra) substitute RHS of expr 1 into expr 2
  1. 6457044853; locally 8007427:
    \(v - a t = v_0\)
    \(pdg_{1357} - pdg_{1467} pdg_{9140} = pdg_{5153}\)
  2. 9658195023; locally 5385244:
    \(d = v_0 t + \frac{1}{2} a t^2\)
    \(pdg_{1943} = \frac{pdg_{1467}^{2} pdg_{9140}}{2} + pdg_{1467} pdg_{5153}\)
  1. 1259826355; locally 5577530:
    \(d = (v - a t) t + \frac{1}{2} a t^2\)
    \(pdg_{1943} = \frac{pdg_{1467}^{2} pdg_{9140}}{2} + pdg_{1467} \left(pdg_{1357} - pdg_{1467} pdg_{9140}\right)\)
valid 6457044853:
9658195023:
1259826355:
6457044853:
9658195023:
1259826355:
equations of motion in 1D with constant acceleration - SUVAT (algebra) simplify
  1. 1259826355; locally 5577530:
    \(d = (v - a t) t + \frac{1}{2} a t^2\)
    \(pdg_{1943} = \frac{pdg_{1467}^{2} pdg_{9140}}{2} + pdg_{1467} \left(pdg_{1357} - pdg_{1467} pdg_{9140}\right)\)
  1. 4580545876; locally 8442394:
    \(d = v t - a t^2 + \frac{1}{2} a t^2\)
    \(pdg_{1943} = pdg_{1357} pdg_{1467} - \frac{pdg_{1467}^{2} pdg_{9140}}{2}\)
valid 1259826355:
4580545876:
1259826355:
4580545876:
equations of motion in 1D with constant acceleration - SUVAT (algebra) LHS of expr 1 equals LHS of expr 2
  1. 3411994811; locally 8658331:
    \(v_{\rm average} = \frac{d}{t}\)
    \(pdg_{6709} = \frac{pdg_{1943}}{pdg_{1467}}\)
  2. 6175547907; locally 5013638:
    \(v_{\rm average} = \frac{v + v_0}{2}\)
    \(pdg_{6709} = \frac{pdg_{1357}}{2} + \frac{pdg_{5153}}{2}\)
  1. 9897284307; locally 4622149:
    \(\frac{d}{t} = \frac{v + v_0}{2}\)
    \(\frac{pdg_{1943}}{pdg_{1467}} = \frac{pdg_{1357}}{2} + \frac{pdg_{5153}}{2}\)
valid 3411994811:
6175547907:
9897284307:
3411994811:
6175547907:
9897284307:
equations of motion in 1D with constant acceleration - SUVAT (algebra) substitute RHS of expr 1 into expr 2
  1. 3462972452; locally 8873965:
    \(v = v_0 + a t\)
    \(pdg_{1357} = pdg_{1467} pdg_{9140} + pdg_{5153}\)
  2. 8706092970; locally 1476448:
    \(d = \left(\frac{v + v_0}{2}\right)t\)
    \(pdg_{1943} = pdg_{1467} \left(\frac{pdg_{1357}}{2} + \frac{pdg_{5153}}{2}\right)\)
  1. 7011114072; locally 3069767:
    \(d = \frac{(v_0 + a t) + v_0}{2} t\)
    \(pdg_{1943} = pdg_{1467} \left(\frac{pdg_{1467} pdg_{9140}}{2} + pdg_{5153}\right)\)
LHS diff is 0 RHS diff is pdg1467*(pdg1357 - pdg1467*pdg9140 - pdg5153)/2 3462972452:
8706092970:
7011114072:
3462972452:
8706092970:
7011114072:
equations of motion in 1D with constant acceleration - SUVAT (algebra) multiply both sides by
  1. 5611024898; locally 7103968:
    \(d = \frac{1}{2 a} (v^2 - v_0^2)\)
    \(pdg_{1943} = \frac{pdg_{1357}^{2} - pdg_{5153}^{2}}{2 pdg_{9140}}\)
  1. 5542390646:
    \(2 a\)
    \(2 pdg_{9140}\)
  1. 8269198922; locally 6814979:
    \(2 a d = v^2 - v_0^2\)
    \(2 pdg_{1943} pdg_{9140} = pdg_{1357}^{2} - pdg_{5153}^{2}\)
valid 5611024898:
8269198922:
5611024898:
8269198922:
equations of motion in 1D with constant acceleration - SUVAT (algebra) multiply both sides by
  1. 3366703541; locally 7864125:
    \(a = \frac{v - v_0}{t}\)
    \(pdg_{9140} = \frac{pdg_{1357} - pdg_{5153}}{pdg_{1467}}\)
  1. 7083390553:
    \(t\)
    \(pdg_{1467}\)
  1. 4748157455; locally 5666935:
    \(a t = v - v_0\)
    \(pdg_{1467} pdg_{9140} = pdg_{1357} - pdg_{5153}\)
valid 3366703541:
4748157455:
3366703541:
4748157455:
equations of motion in 1D with constant acceleration - SUVAT (algebra) subtract X from both sides
  1. 3462972452; locally 8873965:
    \(v = v_0 + a t\)
    \(pdg_{1357} = pdg_{1467} pdg_{9140} + pdg_{5153}\)
  1. 9645178657:
    \(a t\)
    \(pdg_{1467} pdg_{9140}\)
  1. 6457044853; locally 8007427:
    \(v - a t = v_0\)
    \(pdg_{1357} - pdg_{1467} pdg_{9140} = pdg_{5153}\)
valid 3462972452:
6457044853:
3462972452:
6457044853:
equations of motion in 1D with constant acceleration - SUVAT (algebra) simplify
  1. 5733721198; locally 9270356:
    \(d = \frac{1}{2} (v + v_0) \left( \frac{v - v_0}{a} \right)\)
    \(pdg_{1943} = \frac{\left(pdg_{1357} - pdg_{5153}\right) \left(pdg_{1357} + pdg_{5153}\right)}{2 pdg_{9140}}\)
  1. 5611024898; locally 7103968:
    \(d = \frac{1}{2 a} (v^2 - v_0^2)\)
    \(pdg_{1943} = \frac{pdg_{1357}^{2} - pdg_{5153}^{2}}{2 pdg_{9140}}\)
valid 5733721198:
5611024898:
5733721198:
5611024898:
difference of squares
equations of motion in 1D with constant acceleration - SUVAT (algebra) subtract X from both sides
  1. 3462972452; locally 8873965:
    \(v = v_0 + a t\)
    \(pdg_{1357} = pdg_{1467} pdg_{9140} + pdg_{5153}\)
  1. 6729698807:
    \(v_0\)
    \(pdg_{5153}\)
  1. 9759901995; locally 4127918:
    \(v - v_0 = a t\)
    \(pdg_{1357} - pdg_{5153} = pdg_{1467} pdg_{9140}\)
valid 3462972452:
9759901995:
3462972452:
9759901995:
equations of motion in 1D with constant acceleration - SUVAT (algebra) swap LHS with RHS
  1. 4798787814; locally 3386860:
    \(a t + v_0 = v\)
    \(pdg_{1467} pdg_{9140} + pdg_{5153} = pdg_{1357}\)
  1. 3462972452; locally 8873965:
    \(v = v_0 + a t\)
    \(pdg_{1357} = pdg_{1467} pdg_{9140} + pdg_{5153}\)
valid 4798787814:
3462972452:
4798787814:
3462972452:
equations of motion in 1D with constant acceleration - SUVAT (algebra) swap LHS with RHS
  1. 4948763856; locally 7086842:
    \(2 a d + v_0^2 = v^2\)
    \(2 pdg_{1943} pdg_{9140} + pdg_{5153}^{2} = pdg_{1357}^{2}\)
  1. 7939765107; locally 7702534:
    \(v^2 = v_0^2 + 2 a d\)
    \(pdg_{1357}^{2} = 2 pdg_{1943} pdg_{9140} + pdg_{5153}^{2}\)
valid 4948763856:
7939765107:
4948763856:
7939765107:
equations of motion in 1D with constant acceleration - SUVAT (algebra) simplify
  1. 7215099603; locally 4385757:
    \(v^2 = v_0^2 + 2 a t v_0 + a^2 t^2\)
    \(pdg_{1357}^{2} = pdg_{1467}^{2} pdg_{9140}^{2} + 2 pdg_{1467} pdg_{5153} pdg_{9140} + pdg_{5153}^{2}\)
  1. 5144263777; locally 9796063:
    \(v^2 = v_0^2 + 2 a \left( v_0 t +\frac{1}{2} a t^2 \right)\)
    \(pdg_{1357}\)
Nothing to split 7215099603:
5144263777:
7215099603:
5144263777:
factored 2a out of two terms
equations of motion in 1D with constant acceleration - SUVAT (algebra) declare final expr
  1. 8706092970; locally 1476448:
    \(d = \left(\frac{v + v_0}{2}\right)t\)
    \(pdg_{1943} = pdg_{1467} \left(\frac{pdg_{1357}}{2} + \frac{pdg_{5153}}{2}\right)\)
no validation is available for declarations 8706092970:
8706092970:
equations of motion in 1D with constant acceleration - SUVAT (algebra) simplify
  1. 7011114072; locally 3069767:
    \(d = \frac{(v_0 + a t) + v_0}{2} t\)
    \(pdg_{1943} = pdg_{1467} \left(\frac{pdg_{1467} pdg_{9140}}{2} + pdg_{5153}\right)\)
  1. 1265150401; locally 6881977:
    \(d = \frac{2 v_0 + a t}{2} t\)
    \(pdg_{1943} = pdg_{1467} \left(\frac{pdg_{1467} pdg_{9140}}{2} + pdg_{5153}\right)\)
valid 7011114072:
1265150401:
7011114072:
1265150401:
equations of motion in 1D with constant acceleration - SUVAT (algebra) declare initial expr
  1. 6175547907; locally 5013638:
    \(v_{\rm average} = \frac{v + v_0}{2}\)
    \(pdg_{6709} = \frac{pdg_{1357}}{2} + \frac{pdg_{5153}}{2}\)
no validation is available for declarations 6175547907:
6175547907:
equations of motion in 1D with constant acceleration - SUVAT (algebra) declare initial expr
  1. 3411994811; locally 8658331:
    \(v_{\rm average} = \frac{d}{t}\)
    \(pdg_{6709} = \frac{pdg_{1943}}{pdg_{1467}}\)
no validation is available for declarations 3411994811:
3411994811:
velocity at distance r of object dropped from infinity substitute LHS of expr 1 into expr 2
  1. 5902985919; locally 3470082:
    \(\vec{F} = G \frac{m_1 m_2}{x^2} \hat{x}\)
    \(\)
  2. 7882872592; locally 6798426:
    \(W_{\rm to\ system} = \int_{\infty}^r \vec{F}\cdot d\vec{r}\)
    \(\)
  1. 3566149658; locally 7300369:
    \(W_{\rm to\ system} = \int_{\infty}^r \frac{-G m_1 m_2}{x^2} dx\)
    \(\)
failed 5902985919:
7882872592:
3566149658:
5902985919:
7882872592:
3566149658:
velocity at distance r of object dropped from infinity declare initial expr
  1. 5902985919; locally 3470082:
    \(\vec{F} = G \frac{m_1 m_2}{x^2} \hat{x}\)
    \(\)
no validation is available for declarations 5902985919:
5902985919:
https://en.wikipedia.org/wiki/Newton%27s_law_of_universal_gravitation#Modern_form
velocity at distance r of object dropped from infinity substitute LHS of expr 1 into expr 2
  1. 8049905441; locally 9781919:
    \(\Delta KE = KE_{\rm final} - KE_{\rm initial}\)
    \(\)
  2. 1114820451; locally 9835406:
    \(W_{\rm by\ system} = \Delta KE\)
    \(\)
  1. 5779256336; locally 8118190:
    \(W_{\rm by\ system} = KE_{\rm final} - KE_{\rm initial}\)
    \(\)
valid 8049905441:
1114820451:
5779256336:
8049905441:
1114820451:
5779256336:
velocity at distance r of object dropped from infinity declare initial expr
  1. 2924222857; locally 1712972:
    \(v_{\rm initial} = v(r=\infty)\)
    \(\)
no validation is available for declarations 2924222857:
2924222857:
velocity at distance r of object dropped from infinity simplify
  1. 5596822289; locally 5818573:
    \(W_{\rm to\ system} = -G m_1 m_2 \left(\left.\frac{-1}{x}\right|^r_{\infty}\right)\)
    \(\)
  1. 2061086175; locally 2429271:
    \(W_{\rm to\ system} = -G m_1 m_2 \left(\frac{-1}{r} - \frac{-1}{\infty}\right)\)
    \(\)
LHS diff is 0 RHS diff is pdg5022*pdg6277*(-pdg4851 + pdg4851(-1/pdg2530)) 5596822289:
2061086175:
5596822289:
2061086175:
velocity at distance r of object dropped from infinity declare initial expr
  1. 8357234146; locally 5104592:
    \(KE = \frac{1}{2} m v^2\)
    \(pdg_{4929} = \frac{pdg_{1357}^{2} pdg_{5156}}{2}\)
no validation is available for declarations 8357234146:
8357234146:
velocity at distance r of object dropped from infinity declare final expr
  1. 2005061870; locally 3435796:
    \(v(r) = \sqrt{\frac{2 G m_2}{r}}\)
    \(\)
no validation is available for declarations 2005061870:
2005061870:
velocity at distance r of object dropped from infinity evaluate definite integral
  1. 8405272745; locally 9707318:
    \(W_{\rm to\ system} = -G m_1 m_2\int_{\infty}^r \frac{1}{x^2} dx\)
    \(\)
  1. 5596822289; locally 5818573:
    \(W_{\rm to\ system} = -G m_1 m_2 \left(\left.\frac{-1}{x}\right|^r_{\infty}\right)\)
    \(\)
LHS diff is 0 RHS diff is pdg4851*pdg5022*pdg6277*(1 + 1/pdg2530) 8405272745:
5596822289:
8405272745:
5596822289:
velocity at distance r of object dropped from infinity simplify
  1. 2061086175; locally 2429271:
    \(W_{\rm to\ system} = -G m_1 m_2 \left(\frac{-1}{r} - \frac{-1}{\infty}\right)\)
    \(\)
  1. 4393670960; locally 4947999:
    \(W_{\rm to\ system} = \frac{G m_1 m_2}{r}\)
    \(\)
LHS diff is 0 RHS diff is pdg5022*pdg6277*(-pdg2530*pdg4851(-1/pdg2530) - pdg4851)/pdg2530 2061086175:
4393670960:
2061086175:
4393670960:
velocity at distance r of object dropped from infinity change variable X to Y
  1. 5846639423; locally 7112224:
    \(v_{\rm final} = \sqrt{\frac{2 G m_2}{r}}\)
    \(\)
  1. 6599829782:
    \(v_{\rm final}\)
    \(\)
  2. 3531380618:
    \(v(r)\)
    \(\)
  1. 2005061870; locally 3435796:
    \(v(r) = \sqrt{\frac{2 G m_2}{r}}\)
    \(\)
valid 5846639423:
2005061870:
5846639423:
2005061870:
velocity at distance r of object dropped from infinity simplify
  1. 3566149658; locally 7300369:
    \(W_{\rm to\ system} = \int_{\infty}^r \frac{-G m_1 m_2}{x^2} dx\)
    \(\)
  1. 8405272745; locally 9707318:
    \(W_{\rm to\ system} = -G m_1 m_2\int_{\infty}^r \frac{1}{x^2} dx\)
    \(\)
valid 3566149658:
8405272745:
3566149658:
8405272745:
velocity at distance r of object dropped from infinity substitute LHS of expr 1 into expr 2
  1. 3214170322; locally 8462685:
    \(v(r=\infty) = 0\)
    \(\)
  2. 2924222857; locally 1712972:
    \(v_{\rm initial} = v(r=\infty)\)
    \(\)
  1. 2998709778; locally 6923850:
    \(v_{\rm initial} = 0\)
    \(\)
Nothing to split 3214170322:
2924222857:
2998709778:
3214170322:
2924222857:
2998709778:
velocity at distance r of object dropped from infinity declare initial expr
  1. 1114820451; locally 9835406:
    \(W_{\rm by\ system} = \Delta KE\)
    \(\)
no validation is available for declarations 1114820451:
1114820451:
velocity at distance r of object dropped from infinity substitute LHS of expr 1 into expr 2
  1. 9510328252; locally 7110498:
    \(KE_{\rm initial} = 0\)
    \(\)
  2. 5779256336; locally 8118190:
    \(W_{\rm by\ system} = KE_{\rm final} - KE_{\rm initial}\)
    \(\)
  1. 5850144586; locally 2751634:
    \(W_{\rm by\ system} = KE_{\rm final}\)
    \(\)
valid 9510328252:
5779256336:
5850144586:
9510328252:
5779256336:
5850144586:
velocity at distance r of object dropped from infinity declare initial expr
  1. 8049905441; locally 9781919:
    \(\Delta KE = KE_{\rm final} - KE_{\rm initial}\)
    \(\)
no validation is available for declarations 8049905441:
8049905441:
velocity at distance r of object dropped from infinity change three variables in expr
  1. 8357234146; locally 5104592:
    \(KE = \frac{1}{2} m v^2\)
    \(pdg_{4929} = \frac{pdg_{1357}^{2} pdg_{5156}}{2}\)
  1. 3731774096:
    \(KE\)
    \(\)
  2. 3350802342:
    \(KE_{\rm initial}\)
    \(\)
  3. 5904227750:
    \(m\)
    \(\)
  4. 6281834543:
    \(m_1\)
    \(\)
  5. 8066819515:
    \(v\)
    \(\)
  6. 3274176452:
    \(v_{\rm initial}\)
    \(\)
  1. 6091977310; locally 9031887:
    \(KE_{\rm initial} = \frac{1}{2} m_1 v_{\rm initial}^2\)
    \(\)
valid 8357234146:
6091977310:
8357234146:
6091977310:
velocity at distance r of object dropped from infinity substitute LHS of expr 1 into expr 2
  1. 9081138616; locally 6536576:
    \(W_{\rm by\ system} = \frac{1}{2} m_1 v_{\rm final}^2\)
    \(\)
  2. 2907404069; locally 2619766:
    \(W_{\rm by\ system} = W_{\rm to\ system}\)
    \(\)
  1. 4947831649; locally 8655239:
    \(\frac{1}{2} m_1 v_{\rm final}^2 = W_{\rm to\ system}\)
    \(\)
valid 9081138616:
2907404069:
4947831649:
9081138616:
2907404069:
4947831649:
velocity at distance r of object dropped from infinity declare initial expr
  1. 2907404069; locally 2619766:
    \(W_{\rm by\ system} = W_{\rm to\ system}\)
    \(\)
no validation is available for declarations 2907404069:
2907404069:
velocity at distance r of object dropped from infinity substitute LHS of expr 1 into expr 2
  1. 4393670960; locally 4947999:
    \(W_{\rm to\ system} = \frac{G m_1 m_2}{r}\)
    \(\)
  2. 4947831649; locally 8655239:
    \(\frac{1}{2} m_1 v_{\rm final}^2 = W_{\rm to\ system}\)
    \(\)
  1. 6892595652; locally 2942416:
    \(\frac{1}{2} m_1 v_{\rm final}^2 = \frac{G m_1 m_2}{r}\)
    \(\)
valid 4393670960:
4947831649:
6892595652:
4393670960:
4947831649:
6892595652:
velocity at distance r of object dropped from infinity substitute LHS of expr 1 into expr 2
  1. 2998709778; locally 6923850:
    \(v_{\rm initial} = 0\)
    \(\)
  2. 6091977310; locally 9031887:
    \(KE_{\rm initial} = \frac{1}{2} m_1 v_{\rm initial}^2\)
    \(\)
  1. 9510328252; locally 7110498:
    \(KE_{\rm initial} = 0\)
    \(\)
valid 2998709778:
6091977310:
9510328252:
2998709778:
6091977310:
9510328252:
velocity at distance r of object dropped from infinity change three variables in expr
  1. 8357234146; locally 5104592:
    \(KE = \frac{1}{2} m v^2\)
    \(pdg_{4929} = \frac{pdg_{1357}^{2} pdg_{5156}}{2}\)
  1. 4587046017:
    \(KE\)
    \(\)
  2. 3939572542:
    \(KE_{\rm final}\)
    \(\)
  3. 9350720370:
    \(m\)
    \(\)
  4. 3166466250:
    \(m_1\)
    \(\)
  5. 6038673136:
    \(v\)
    \(\)
  6. 1616666229:
    \(v_{\rm final}\)
    \(\)
  1. 8552710882; locally 1397156:
    \(KE_{\rm final} = \frac{1}{2} m_1 v_{\rm final}^2\)
    \(\)
failed 8357234146:
8552710882:
8357234146:
8552710882:
velocity at distance r of object dropped from infinity declare initial expr
  1. 7882872592; locally 6798426:
    \(W_{\rm to\ system} = \int_{\infty}^r \vec{F}\cdot d\vec{r}\)
    \(\)
no validation is available for declarations 7882872592:
7882872592:
velocity at distance r of object dropped from infinity square root both sides
  1. 7112646057; locally 4594601:
    \(v_{\rm final}^2 = \frac{2 G m_2}{r}\)
    \(\)
  1. 5846639423; locally 7112224:
    \(v_{\rm final} = \sqrt{\frac{2 G m_2}{r}}\)
    \(\)
  2. 5693047217; locally 1366396:
    \(v_{\rm final} = -\sqrt{\frac{2 G m_2}{r}}\)
    \(\)
no check performed 7112646057:
5846639423:
5693047217:
7112646057:
5846639423:
5693047217:
velocity at distance r of object dropped from infinity substitute LHS of expr 1 into expr 2
  1. 8552710882; locally 1397156:
    \(KE_{\rm final} = \frac{1}{2} m_1 v_{\rm final}^2\)
    \(\)
  2. 5850144586; locally 2751634:
    \(W_{\rm by\ system} = KE_{\rm final}\)
    \(\)
  1. 9081138616; locally 6536576:
    \(W_{\rm by\ system} = \frac{1}{2} m_1 v_{\rm final}^2\)
    \(\)
valid 8552710882:
5850144586:
9081138616:
8552710882:
5850144586:
9081138616:
velocity at distance r of object dropped from infinity multiply both sides by
  1. 6892595652; locally 2942416:
    \(\frac{1}{2} m_1 v_{\rm final}^2 = \frac{G m_1 m_2}{r}\)
    \(\)
  1. 7410526982:
    \(2/m_1\)
    \(\)
  1. 7112646057; locally 4594601:
    \(v_{\rm final}^2 = \frac{2 G m_2}{r}\)
    \(\)
valid 6892595652:
7112646057:
6892595652:
7112646057:
velocity at distance r of object dropped from infinity declare initial expr
  1. 3214170322; locally 8462685:
    \(v(r=\infty) = 0\)
    \(\)
no validation is available for declarations 3214170322:
3214170322:
starting velocity at infinity is zero
coefficient of isothermal compressibility using the equation of state for an ideal gas declare final expr
  1. 9718685793; locally 2206759:
    \(\kappa_T = \frac{1}{P}\)
    \(pdg_{4645} = \frac{1}{pdg_{8134}}\)
no validation is available for declarations 9718685793:
9718685793:
coefficient of isothermal compressibility using the equation of state for an ideal gas simplify
  1. 1190768176; locally 3915956:
    \(\kappa_T = \frac{-nRT}{V} \left( \frac{ \partial }{\partial P}\left(\frac{1}{P}\right) \right)_T\)
    \(pdg_{4645} = - \frac{pdg_{2834} pdg_{7343} pdg_{8179} \frac{d}{d pdg_{8134}} \frac{1}{pdg_{8134}}}{pdg_{7586}}\)
  1. 3605073197; locally 6275836:
    \(\kappa_T = \frac{-nRT}{V} \left( \frac{-1}{P^2}\right)\)
    \(pdg_{4645} = \frac{pdg_{2834} pdg_{7343} pdg_{8179}}{pdg_{7586} pdg_{8134}^{2}}\)
valid 1190768176:
3605073197:
1190768176:
3605073197:
coefficient of isothermal compressibility using the equation of state for an ideal gas declare initial expr
  1. 9781951738; locally 4239912:
    \(\kappa_T = \frac{-1}{V} \left( \frac{ \partial V}{\partial P} \right)_T\)
    \(pdg_{4645} = - \frac{\frac{d}{d pdg_{8134}} pdg_{7586}}{pdg_{7586}}\)
no validation is available for declarations 9781951738:
9781951738:
coefficient of isothermal compressibility using the equation of state for an ideal gas divide both sides by
  1. 8435841627; locally 4454896:
    \(P V = n R T\)
    \(pdg_{7586} pdg_{8134} = pdg_{2834} pdg_{7343} pdg_{8179}\)
  1. 6296166842:
    \(P\)
    \(pdg_{8134}\)
  1. 3497828859; locally 5840241:
    \(V = \frac{n R T}{P}\)
    \(pdg_{7586} = \frac{pdg_{2834} pdg_{7343} pdg_{8179}}{pdg_{8134}}\)
valid 8435841627:
3497828859:
8435841627:
3497828859:
coefficient of isothermal compressibility using the equation of state for an ideal gas substitute LHS of expr 1 into expr 2
  1. 8435841627; locally 4454896:
    \(P V = n R T\)
    \(pdg_{7586} pdg_{8134} = pdg_{2834} pdg_{7343} pdg_{8179}\)
  2. 3605073197; locally 6275836:
    \(\kappa_T = \frac{-nRT}{V} \left( \frac{-1}{P^2}\right)\)
    \(pdg_{4645} = \frac{pdg_{2834} pdg_{7343} pdg_{8179}}{pdg_{7586} pdg_{8134}^{2}}\)
  1. 9847143017; locally 1003658:
    \(\kappa_T = \frac{-PV}{V} \left( \frac{-1}{P^2}\right)\)
    \(pdg_{4645} = \frac{1}{pdg_{8134}}\)
valid 8435841627:
3605073197:
9847143017:
8435841627:
3605073197:
9847143017:
coefficient of isothermal compressibility using the equation of state for an ideal gas simplify
  1. 8368984890; locally 5196207:
    \(\kappa_T = \frac{-1}{V} \left( \frac{ \partial }{\partial P}\left(\frac{nRT}{P}\right) \right)_T\)
    \(pdg_{4645} = - \frac{\frac{\partial}{\partial pdg_{8134}} \frac{pdg_{2834} pdg_{7343} pdg_{8179}}{pdg_{8134}}}{pdg_{7586}}\)
  1. 1190768176; locally 3915956:
    \(\kappa_T = \frac{-nRT}{V} \left( \frac{ \partial }{\partial P}\left(\frac{1}{P}\right) \right)_T\)
    \(pdg_{4645} = - \frac{pdg_{2834} pdg_{7343} pdg_{8179} \frac{d}{d pdg_{8134}} \frac{1}{pdg_{8134}}}{pdg_{7586}}\)
valid 8368984890:
1190768176:
8368984890:
1190768176:
coefficient of isothermal compressibility using the equation of state for an ideal gas simplify
  1. 9847143017; locally 1003658:
    \(\kappa_T = \frac{-PV}{V} \left( \frac{-1}{P^2}\right)\)
    \(pdg_{4645} = \frac{1}{pdg_{8134}}\)
  1. 9718685793; locally 2206759:
    \(\kappa_T = \frac{1}{P}\)
    \(pdg_{4645} = \frac{1}{pdg_{8134}}\)
valid 9847143017:
9718685793:
9847143017:
9718685793:
coefficient of isothermal compressibility using the equation of state for an ideal gas substitute LHS of expr 1 into expr 2
  1. 3497828859; locally 5840241:
    \(V = \frac{n R T}{P}\)
    \(pdg_{7586} = \frac{pdg_{2834} pdg_{7343} pdg_{8179}}{pdg_{8134}}\)
  2. 9781951738; locally 4239912:
    \(\kappa_T = \frac{-1}{V} \left( \frac{ \partial V}{\partial P} \right)_T\)
    \(pdg_{4645} = - \frac{\frac{d}{d pdg_{8134}} pdg_{7586}}{pdg_{7586}}\)
  1. 8368984890; locally 5196207:
    \(\kappa_T = \frac{-1}{V} \left( \frac{ \partial }{\partial P}\left(\frac{nRT}{P}\right) \right)_T\)
    \(pdg_{4645} = - \frac{\frac{\partial}{\partial pdg_{8134}} \frac{pdg_{2834} pdg_{7343} pdg_{8179}}{pdg_{8134}}}{pdg_{7586}}\)
LHS diff is 0 RHS diff is -(pdg2834*pdg7343*pdg8179 - pdg7586*pdg8134)/(pdg7586*pdg8134**2) 3497828859:
9781951738:
8368984890:
3497828859:
9781951738:
8368984890:
coefficient of isothermal compressibility using the equation of state for an ideal gas declare initial expr
  1. 8435841627; locally 4454896:
    \(P V = n R T\)
    \(pdg_{7586} pdg_{8134} = pdg_{2834} pdg_{7343} pdg_{8179}\)
no validation is available for declarations 8435841627:
8435841627:
speed of Earth around Sun declare final expr
  1. 4180845508; locally 1001745:
    \(v_{\rm Earth\ orbit} = 29.8 \frac{{\rm km}}{{\rm sec}}\)
    \(pdg_{7427} = 29.8\)
no validation is available for declarations 4180845508:
4180845508:
speed of Earth around Sun substitute LHS of expr 1 into expr 2
  1. 6348260313; locally 5753220:
    \(C_{\rm Earth\ orbit} = 2 \pi r_{\rm Earth\ orbit}\)
    \(pdg_{1534} = 2 pdg_{3141} pdg_{6081}\)
  2. 3046191961; locally 5320197:
    \(v_{\rm Earth\ orbit} = \frac{C_{\rm Earth\ orbit}}{t_{\rm Earth\ orbit}}\)
    \(pdg_{7427} = \frac{pdg_{1534}}{pdg_{5344}}\)
  1. 3080027960; locally 9129246:
    \(v_{\rm Earth\ orbit} = \frac{2 \pi r_{\rm Earth\ orbit}}{t_{\rm Earth\ orbit}}\)
    \(pdg_{7427} = \frac{2 pdg_{3141} pdg_{6081}}{pdg_{5344}}\)
valid 6348260313:
3046191961:
3080027960:
6348260313:
3046191961:
3080027960:
speed of Earth around Sun simplify
  1. 6998364753; locally 8698819:
    \(v_{\rm Earth\ orbit} = \frac{2 \pi \left( 1.496\ 10^8 {\rm km} \right)}{3.16\ 10^7 {\rm seconds}}\)
    \(pdg_{7427} = 0.632911392405063 pdg_{3141}\)
  1. 4180845508; locally 1001745:
    \(v_{\rm Earth\ orbit} = 29.8 \frac{{\rm km}}{{\rm sec}}\)
    \(pdg_{7427} = 29.8\)
LHS diff is 0 RHS diff is 0.632911392405063*pdg3141 - 29.8 6998364753:
4180845508:
6998364753:
4180845508:
speed of Earth around Sun substitute LHS of expr 1 into expr 2
  1. 8721295221; locally 9417128:
    \(t_{\rm Earth\ orbit} = 3.16 10^7 {\rm seconds}\)
    \(pdg_{5344} = 3\)
  2. 3080027960; locally 9129246:
    \(v_{\rm Earth\ orbit} = \frac{2 \pi r_{\rm Earth\ orbit}}{t_{\rm Earth\ orbit}}\)
    \(pdg_{7427} = \frac{2 pdg_{3141} pdg_{6081}}{pdg_{5344}}\)
  1. 4593428198; locally 1441436:
    \(v_{\rm Earth\ orbit} = \frac{2 \pi r_{\rm Earth\ orbit}}{3.16\ 10^7 {\rm seconds}}\)
    \(pdg_{7427} = 0.632911392405063 pdg_{3141} pdg_{6081}\)
LHS diff is 0 RHS diff is 0.0337552742616034*pdg3141*pdg6081 8721295221:
3080027960:
4593428198:
8721295221:
3080027960:
4593428198:
speed of Earth around Sun declare initial expr
  1. 6785303857; locally 7959026:
    \(C = 2 \pi r\)
    \(pdg_{3034} = 2 pdg_{2530} pdg_{3141}\)
no validation is available for declarations 6785303857:
6785303857:
circumference of a circle
speed of Earth around Sun declare assumption
  1. 3472836147; locally 4133484:
    \(r_{\rm Earth\ orbit} = 1.496\ 10^8 {\rm km}\)
    \(pdg_{6081} = 1.496\)
no validation is available for declarations 3472836147:
3472836147:
speed of Earth around Sun change variable X to Y
  1. 5426308937; locally 1131405:
    \(v = \frac{d}{t}\)
    \(pdg_{1357} = \frac{pdg_{1943}}{pdg_{1467}}\)
  1. 1277713901:
    \(d\)
    \(pdg_{1943}\)
  2. 7476820482:
    \(C\)
    \(pdg_{3034}\)
  1. 6946088325; locally 7360652:
    \(v = \frac{C}{t}\)
    \(pdg_{1357} = \frac{pdg_{3034}}{pdg_{1467}}\)
valid 5426308937:
6946088325:
5426308937:
6946088325:
speed of Earth around Sun declare assumption
  1. 7175416299; locally 9494155:
    \(t_{\rm Earth\ orbit} = 1 {\rm year}\)
    \(pdg_{5344} = 1\)
no validation is available for declarations 7175416299:
7175416299:
speed of Earth around Sun change three variables in expr
  1. 6946088325; locally 7360652:
    \(v = \frac{C}{t}\)
    \(pdg_{1357} = \frac{pdg_{3034}}{pdg_{1467}}\)
  1. 4057686137:
    \(C\)
    \(pdg_{3034}\)
  2. 7708501762:
    \(C_{\rm Earth\ orbit}\)
    \(pdg_{1534}\)
  3. 9753878784:
    \(v\)
    \(pdg_{1357}\)
  4. 9601500174:
    \(v_{\rm Earth\ orbit}\)
    \(pdg_{7427}\)
  5. 8135396036:
    \(t\)
    \(pdg_{1467}\)
  6. 4470433702:
    \(t_{\rm Earth\ orbit}\)
    \(pdg_{5344}\)
  1. 3046191961; locally 5320197:
    \(v_{\rm Earth\ orbit} = \frac{C_{\rm Earth\ orbit}}{t_{\rm Earth\ orbit}}\)
    \(pdg_{7427} = \frac{pdg_{1534}}{pdg_{5344}}\)
valid 6946088325:
3046191961:
6946088325:
3046191961:
speed of Earth around Sun change two variables in expr
  1. 6785303857; locally 7959026:
    \(C = 2 \pi r\)
    \(pdg_{3034} = 2 pdg_{2530} pdg_{3141}\)
  1. 4057686137:
    \(C\)
    \(pdg_{3034}\)
  2. 6239815585:
    \(C_{\rm Earth\ orbit}\)
    \(pdg_{1534}\)
  3. 2346150725:
    \(r\)
    \(pdg_{2530}\)
  4. 4202292449:
    \(r_{\rm Earth\ orbit}\)
    \(pdg_{6081}\)
  1. 6348260313; locally 5753220:
    \(C_{\rm Earth\ orbit} = 2 \pi r_{\rm Earth\ orbit}\)
    \(pdg_{1534} = 2 pdg_{3141} pdg_{6081}\)
valid 6785303857:
6348260313:
6785303857:
6348260313:
speed of Earth around Sun multiply RHS by unity
  1. 7175416299; locally 9494155:
    \(t_{\rm Earth\ orbit} = 1 {\rm year}\)
    \(pdg_{5344} = 1\)
  1. 3219318145:
    \(\frac{365 {\rm days}}{1 {\rm year}} \frac{24 {\rm hours}}{1 {\rm day}} \frac{60 {\rm minutes}}{1 {\rm hour}} \frac{60 {\rm seconds}}{1 {\rm minute}}\)
    \(365\)
  1. 8721295221; locally 9417128:
    \(t_{\rm Earth\ orbit} = 3.16 10^7 {\rm seconds}\)
    \(pdg_{5344} = 3\)
feed diff is 364 LHS diff is 0 RHS diff is 362 7175416299:
8721295221:
7175416299:
8721295221:
speed of Earth around Sun declare initial expr
  1. 5426308937; locally 1131405:
    \(v = \frac{d}{t}\)
    \(pdg_{1357} = \frac{pdg_{1943}}{pdg_{1467}}\)
no validation is available for declarations 5426308937:
5426308937:
speed of Earth around Sun substitute LHS of expr 1 into expr 2
  1. 3472836147; locally 4133484:
    \(r_{\rm Earth\ orbit} = 1.496\ 10^8 {\rm km}\)
    \(pdg_{6081} = 1.496\)
  2. 4593428198; locally 1441436:
    \(v_{\rm Earth\ orbit} = \frac{2 \pi r_{\rm Earth\ orbit}}{3.16\ 10^7 {\rm seconds}}\)
    \(pdg_{7427} = 0.632911392405063 pdg_{3141} pdg_{6081}\)
  1. 6998364753; locally 8698819:
    \(v_{\rm Earth\ orbit} = \frac{2 \pi \left( 1.496\ 10^8 {\rm km} \right)}{3.16\ 10^7 {\rm seconds}}\)
    \(pdg_{7427} = 0.632911392405063 pdg_{3141}\)
LHS diff is 0 RHS diff is 0.313924050632911*pdg3141 3472836147:
4593428198:
6998364753:
3472836147:
4593428198:
6998364753:
first law of thermodynamics multiply both sides by
  1. 3464107376; locally 2714175:
    \(\alpha = \frac{1}{V} \left( \frac{\partial V}{\partial T} \right)_p\)
    \(pdg_{4686} = \frac{\frac{d}{d pdg_{7343}} pdg_{7586}}{pdg_{7586}}\)
  1. 5074423401:
    \(V\)
    \(pdg_{7586}\)
  1. 6397683463; locally 7939101:
    \(V \alpha = \left( \frac{\partial V}{\partial T} \right)_p\)
    \(pdg_{4686} pdg_{7586} = \frac{d}{d pdg_{7343}} pdg_{7586}\)
valid 3464107376:
6397683463:
3464107376:
6397683463:
first law of thermodynamics substitute LHS of two expressions into expr
  1. 1085150613; locally 4576755:
    \(C_V = \left(\frac{\partial U}{\partial T}\right)_V\)
    \(pdg_{6682} = \frac{d}{d pdg_{7343}} pdg_{5786}\)
  2. 5634116660; locally 7384950:
    \(\pi_T = \left(\frac{\partial U}{\partial V}\right)_T\)
    \(pdg_{5480} = \frac{d}{d pdg_{7586}} pdg_{5786}\)
  3. 9941599459; locally 2445123:
    \(dU = \left(\frac{\partial U}{\partial T}\right)_V dT + \left(\frac{\partial U}{\partial V}\right)_T dV\)
    \(dU = \frac{d}{d pdg_{7343}} pdg_{5786}\)
  1. 5002539602; locally 5358683:
    \(dU = C_V dT + \pi_T dV\)
    \(dU = dT pdg_{6682} + dV pdg_{5480}\)
failed 1085150613:
5634116660:
9941599459:
5002539602:
1085150613:
5634116660:
9941599459:
5002539602:
first law of thermodynamics declare initial expr
  1. 3464107376; locally 2714175:
    \(\alpha = \frac{1}{V} \left( \frac{\partial V}{\partial T} \right)_p\)
    \(pdg_{4686} = \frac{\frac{d}{d pdg_{7343}} pdg_{7586}}{pdg_{7586}}\)
no validation is available for declarations 3464107376:
3464107376:
first law of thermodynamics declare initial expr
  1. 1815398659; locally 7368252:
    \(U = Q + W\)
    \(pdg_{5786} = pdg_{1088} + pdg_{9432}\)
no validation is available for declarations 1815398659:
1815398659:
first law of thermodynamics divide both sides by
  1. 5002539602; locally 5358683:
    \(dU = C_V dT + \pi_T dV\)
    \(dU = dT pdg_{6682} + dV pdg_{5480}\)
  1. 8854422847:
    \(dT\)
    \(pdg_{7343}\)
  1. 6055078815; locally 3830663:
    \(\left(\frac{\partial U}{\partial T}\right)_p = C_V \left(\frac{\partial T}{\partial T}\right)_p + \pi_T \left( \frac{\partial V}{\partial T} \right)_p\)
    \(\frac{d}{d pdg_{7343}} pdg_{5786}\)
Nothing to split 5002539602:
6055078815:
5002539602:
6055078815:
first law of thermodynamics simplify
  1. 2257410739; locally 1136968:
    \(\left(\frac{\partial U}{\partial T}\right)_p = C_V \left(\frac{\partial T}{\partial T}\right)_p + \pi_T V \alpha\)
    \(\frac{d}{d pdg_{7343}} pdg_{5786}\)
  1. 7826132469; locally 1189259:
    \(\left(\frac{\partial U}{\partial T}\right)_p = C_V + \pi_T V \alpha\)
    \(\frac{d}{d pdg_{7343}} pdg_{5786}\)
Nothing to split 2257410739:
7826132469:
2257410739:
7826132469:
first law of thermodynamics declare initial expr
  1. 5634116660; locally 7384950:
    \(\pi_T = \left(\frac{\partial U}{\partial V}\right)_T\)
    \(pdg_{5480} = \frac{d}{d pdg_{7586}} pdg_{5786}\)
no validation is available for declarations 5634116660:
5634116660:
first law of thermodynamics substitute LHS of expr 1 into expr 2
  1. 6397683463; locally 7939101:
    \(V \alpha = \left( \frac{\partial V}{\partial T} \right)_p\)
    \(pdg_{4686} pdg_{7586} = \frac{d}{d pdg_{7343}} pdg_{7586}\)
  2. 6055078815; locally 3830663:
    \(\left(\frac{\partial U}{\partial T}\right)_p = C_V \left(\frac{\partial T}{\partial T}\right)_p + \pi_T \left( \frac{\partial V}{\partial T} \right)_p\)
    \(\frac{d}{d pdg_{7343}} pdg_{5786}\)
  1. 2257410739; locally 1136968:
    \(\left(\frac{\partial U}{\partial T}\right)_p = C_V \left(\frac{\partial T}{\partial T}\right)_p + \pi_T V \alpha\)
    \(\frac{d}{d pdg_{7343}} pdg_{5786}\)
Nothing to split 6397683463:
6055078815:
2257410739:
6397683463:
6055078815:
2257410739:
first law of thermodynamics declare initial expr
  1. 9941599459; locally 2445123:
    \(dU = \left(\frac{\partial U}{\partial T}\right)_V dT + \left(\frac{\partial U}{\partial V}\right)_T dV\)
    \(dU = \frac{d}{d pdg_{7343}} pdg_{5786}\)
no validation is available for declarations 9941599459:
9941599459:
hold volume constant in first term; hold temperature constant in second term
first law of thermodynamics declare initial expr
  1. 3547519267; locally 8155541:
    \(S = k_{\rm Boltzmann} \ln \Omega\)
    \(pdg_{1394} = pdg_{1157} \log{\left(pdg_{3434} \right)}\)
no validation is available for declarations 3547519267:
3547519267:
first law of thermodynamics declare initial expr
  1. 1085150613; locally 4576755:
    \(C_V = \left(\frac{\partial U}{\partial T}\right)_V\)
    \(pdg_{6682} = \frac{d}{d pdg_{7343}} pdg_{5786}\)
no validation is available for declarations 1085150613:
1085150613:
first law of thermodynamics declare initial expr
  1. 9781951738; locally 9670239:
    \(\kappa_T = \frac{-1}{V} \left( \frac{ \partial V}{\partial P} \right)_T\)
    \(pdg_{4645} = - \frac{\frac{d}{d pdg_{8134}} pdg_{7586}}{pdg_{7586}}\)
no validation is available for declarations 9781951738:
9781951738:
optics: Law of refraction to Brewster's angle declare identity
  1. 8588429722; locally 3940135:
    \(\sin( 90^{\circ} - x ) = \cos( x )\)
    \(- \sin{\left(pdg_{1464} - 90 \right)} = \cos{\left(pdg_{1464} \right)}\)
no validation is available for declarations 8588429722:
8588429722:
optics: Law of refraction to Brewster's angle substitute LHS of expr 1 into expr 2
  1. 6831637424; locally 7426234:
    \(\sin( 90^{\circ} - \theta_{\rm Brewster} ) = \cos( \theta_{\rm Brewster} )\)
    \(pdg_{4928}\)
  2. 7696214507; locally 4962698:
    \(n_1 \sin( \theta_{\rm Brewster} ) = n_2 \sin( 90^{\circ} - \theta_{\rm Brewster} )\)
    \(pdg_{2941} \sin{\left(pdg_{4928} \right)} = - pdg_{1958} \sin{\left(pdg_{4928} - 90 \right)}\)
  1. 3061811650; locally 9701820:
    \(n_1 \sin( \theta_{\rm Brewster} ) = n_2 \cos( \theta_{\rm Brewster} )\)
    \(pdg_{2941} \sin{\left(pdg_{4928} \right)} = pdg_{1958} \cos{\left(pdg_{4928} \right)}\)
Nothing to split 6831637424:
7696214507:
3061811650:
6831637424:
7696214507:
3061811650:
optics: Law of refraction to Brewster's angle declare final expr
  1. 8495187962; locally 8186016:
    \(\theta_{\rm Brewster} = \arctan{ \left( \frac{ n_1 }{ n_2 } \right) }\)
    \(pdg_{4928} = \operatorname{atan}{\left(\frac{pdg_{2941}}{pdg_{1958}} \right)}\)
no validation is available for declarations 8495187962:
8495187962:
optics: Law of refraction to Brewster's angle declare initial expr
  1. 6450985774; locally 9932375:
    \(n_1 \sin( \theta_1 ) = n_2 \sin( \theta_2 )\)
    \(pdg_{2941} \sin{\left(pdg_{3509} \right)} = pdg_{1958} \sin{\left(pdg_{7545} \right)}\)
no validation is available for declarations 6450985774:
6450985774:
optics: Law of refraction to Brewster's angle declare identity
  1. 4968680693; locally 2621708:
    \(\tan( x ) = \frac{ \sin( x )}{\cos( x )}\)
    \(\tan{\left(pdg_{1464} \right)} = \frac{\sin{\left(pdg_{1464} \right)}}{\cos{\left(pdg_{1464} \right)}}\)
no validation is available for declarations 4968680693:
4968680693:
optics: Law of refraction to Brewster's angle divide both sides by
  1. 3061811650; locally 9701820:
    \(n_1 \sin( \theta_{\rm Brewster} ) = n_2 \cos( \theta_{\rm Brewster} )\)
    \(pdg_{2941} \sin{\left(pdg_{4928} \right)} = pdg_{1958} \cos{\left(pdg_{4928} \right)}\)
  1. 7857757625:
    \(n_1\)
    \(pdg_{2941}\)
  1. 9756089533; locally 9314305:
    \(\sin( \theta_{\rm Brewster} ) = \frac{n_2}{n_1} \cos( \theta_{\rm Brewster} )\)
    \(\sin{\left(pdg_{4928} \right)} = \frac{pdg_{1958} \cos{\left(pdg_{4928} \right)}}{pdg_{2941}}\)
valid 3061811650:
9756089533:
3061811650:
9756089533:
optics: Law of refraction to Brewster's angle substitute LHS of expr 1 into expr 2
  1. 1310571337; locally 3893026:
    \(\theta_{\rm refracted} = 90^{\circ} - \theta_{\rm Brewster}\)
    \(pdg_{4928}\)
  2. 2575937347; locally 4176694:
    \(n_1 \sin( \theta_{\rm Brewster} ) = n_2 \sin( \theta_{\rm refracted} )\)
    \(pdg_{2941} \sin{\left(pdg_{4928} \right)} = pdg_{1958} \sin{\left(pdg_{2243} \right)}\)
  1. 7696214507; locally 4962698:
    \(n_1 \sin( \theta_{\rm Brewster} ) = n_2 \sin( 90^{\circ} - \theta_{\rm Brewster} )\)
    \(pdg_{2941} \sin{\left(pdg_{4928} \right)} = - pdg_{1958} \sin{\left(pdg_{4928} - 90 \right)}\)
Nothing to split 1310571337:
2575937347:
7696214507:
1310571337:
2575937347:
7696214507:
optics: Law of refraction to Brewster's angle change two variables in expr
  1. 6450985774; locally 9932375:
    \(n_1 \sin( \theta_1 ) = n_2 \sin( \theta_2 )\)
    \(pdg_{2941} \sin{\left(pdg_{3509} \right)} = pdg_{1958} \sin{\left(pdg_{7545} \right)}\)
  1. 7154592211:
    \(\theta_2\)
    \(pdg_{7545}\)
  2. 6353701615:
    \(\theta_{\rm refracted}\)
    \(pdg_{2243}\)
  3. 2773628333:
    \(\theta_1\)
    \(pdg_{3509}\)
  4. 9029795851:
    \(\theta_{\rm Brewster}\)
    \(pdg_{4928}\)
  1. 2575937347; locally 4176694:
    \(n_1 \sin( \theta_{\rm Brewster} ) = n_2 \sin( \theta_{\rm refracted} )\)
    \(pdg_{2941} \sin{\left(pdg_{4928} \right)} = pdg_{1958} \sin{\left(pdg_{2243} \right)}\)
valid 6450985774:
2575937347:
6450985774:
2575937347:
optics: Law of refraction to Brewster's angle change variable X to Y
  1. 4968680693; locally 2621708:
    \(\tan( x ) = \frac{ \sin( x )}{\cos( x )}\)
    \(\tan{\left(pdg_{1464} \right)} = \frac{\sin{\left(pdg_{1464} \right)}}{\cos{\left(pdg_{1464} \right)}}\)
  1. 7321695558:
    \(\theta_{\rm Brewster}\)
    \(pdg_{4928}\)
  2. 9906920183:
    \(x\)
    \(pdg_{1464}\)
  1. 4501377629; locally 1898054:
    \(\tan( \theta_{\rm Brewster} ) = \frac{ \sin( \theta_{\rm Brewster} )}{\cos( \theta_{\rm Brewster} )}\)
    \(\tan{\left(pdg_{4928} \right)} = \frac{\sin{\left(pdg_{4928} \right)}}{\cos{\left(pdg_{4928} \right)}}\)
LHS diff is tan(pdg1464) - tan(pdg4928) RHS diff is tan(pdg1464) - tan(pdg4928) 4968680693:
4501377629:
4968680693:
4501377629:
optics: Law of refraction to Brewster's angle substitute LHS of expr 1 into expr 2
  1. 4501377629; locally 1898054:
    \(\tan( \theta_{\rm Brewster} ) = \frac{ \sin( \theta_{\rm Brewster} )}{\cos( \theta_{\rm Brewster} )}\)
    \(\tan{\left(pdg_{4928} \right)} = \frac{\sin{\left(pdg_{4928} \right)}}{\cos{\left(pdg_{4928} \right)}}\)
  2. 2768857871; locally 8585856:
    \(\frac{\sin( \theta_{\rm Brewster} )}{\cos( \theta_{\rm Brewster} )} = \frac{n_2}{n_1}\)
    \(\frac{\sin{\left(pdg_{4928} \right)}}{\cos{\left(pdg_{4928} \right)}} = \frac{pdg_{1958}}{pdg_{2941}}\)
  1. 3417126140; locally 5179630:
    \(\tan( \theta_{\rm Brewster} ) = \frac{ n_2 }{ n_1 }\)
    \(\tan{\left(pdg_{4928} \right)} = \frac{pdg_{1958}}{pdg_{2941}}\)
valid 4501377629:
2768857871:
3417126140:
4501377629:
2768857871:
3417126140:
optics: Law of refraction to Brewster's angle declare initial expr
  1. 8945218208; locally 5563180:
    \(\theta_{\rm Brewster} + \theta_{\rm refracted} = 90^{\circ}\)
    \(pdg_{4928}\)
no validation is available for declarations 8945218208:
8945218208:
optics: Law of refraction to Brewster's angle apply function to both sides of expression
  1. 3417126140; locally 5179630:
    \(\tan( \theta_{\rm Brewster} ) = \frac{ n_2 }{ n_1 }\)
    \(\tan{\left(pdg_{4928} \right)} = \frac{pdg_{1958}}{pdg_{2941}}\)
  1. 5453995431:
    \(\arctan{ x }\)
    \(\operatorname{atan}{\left(pdg_{1464} \right)}\)
  2. 6023986360:
    \(x\)
    \(pdg_{1464}\)
  1. 8495187962; locally 8186016:
    \(\theta_{\rm Brewster} = \arctan{ \left( \frac{ n_1 }{ n_2 } \right) }\)
    \(pdg_{4928} = \operatorname{atan}{\left(\frac{pdg_{2941}}{pdg_{1958}} \right)}\)
no check performed 3417126140:
8495187962:
3417126140:
8495187962:
optics: Law of refraction to Brewster's angle divide both sides by
  1. 9756089533; locally 9314305:
    \(\sin( \theta_{\rm Brewster} ) = \frac{n_2}{n_1} \cos( \theta_{\rm Brewster} )\)
    \(\sin{\left(pdg_{4928} \right)} = \frac{pdg_{1958} \cos{\left(pdg_{4928} \right)}}{pdg_{2941}}\)
  1. 5632428182:
    \(\cos( \theta_{\rm Brewster} )\)
    \(\cos{\left(pdg_{4928} \right)}\)
  1. 2768857871; locally 8585856:
    \(\frac{\sin( \theta_{\rm Brewster} )}{\cos( \theta_{\rm Brewster} )} = \frac{n_2}{n_1}\)
    \(\frac{\sin{\left(pdg_{4928} \right)}}{\cos{\left(pdg_{4928} \right)}} = \frac{pdg_{1958}}{pdg_{2941}}\)
valid 9756089533:
2768857871:
9756089533:
2768857871:
optics: Law of refraction to Brewster's angle change variable X to Y
  1. 8588429722; locally 3940135:
    \(\sin( 90^{\circ} - x ) = \cos( x )\)
    \(- \sin{\left(pdg_{1464} - 90 \right)} = \cos{\left(pdg_{1464} \right)}\)
  1. 7375348852:
    \(\theta_{\rm Brewster}\)
    \(pdg_{4928}\)
  2. 1512581563:
    \(x\)
    \(pdg_{1464}\)
  1. 6831637424; locally 7426234:
    \(\sin( 90^{\circ} - \theta_{\rm Brewster} ) = \cos( \theta_{\rm Brewster} )\)
    \(pdg_{4928}\)
Nothing to split 8588429722:
6831637424:
8588429722:
6831637424:
optics: Law of refraction to Brewster's angle subtract X from both sides
  1. 8945218208; locally 5563180:
    \(\theta_{\rm Brewster} + \theta_{\rm refracted} = 90^{\circ}\)
    \(pdg_{4928}\)
  1. 9025853427:
    \(\theta_{\rm Brewster}\)
    \(pdg_{4928}\)
  1. 1310571337; locally 3893026:
    \(\theta_{\rm refracted} = 90^{\circ} - \theta_{\rm Brewster}\)
    \(pdg_{4928}\)
Nothing to split 8945218208:
1310571337:
8945218208:
1310571337:
mass of the Earth replace constant with value
  1. 9440616166; locally 9133599:
    \(m_{\rm Earth} = \frac{g_{\rm Earth} r_{\rm Earth}^2}{G}\)
    \(pdg_{5458} = \frac{pdg_{3236}^{2} pdg_{7557}}{pdg_{6277}}\)
  1. 2091584724:
    \(g_{\rm Earth}\)
    \(pdg_{7557}\)
  2. 9590696981:
    \(9.80665\)
    \(9.80665\)
  3. 7816982139:
    \(m/s^2\)
    \(\frac{\text{m}^{2}}{\text{s}^{2}}\)
  1. 7846240076; locally 2593741:
    \(m_{\rm Earth} = \frac{(9.80665 m/s^2) r_{\rm Earth}^2}{G}\)
    \(pdg_{5458} = \frac{9 pdg_{3236}^{2}}{pdg_{6277}}\)
no check performed 9440616166:
7846240076:
9440616166:
7846240076:
mass of the Earth divide both sides by
  1. 9407192813; locally 7388891:
    \(G \frac{m_{\rm Earth} m}{r_{\rm Earth}^2} = m g_{\rm Earth}\)
    \(\frac{pdg_{5156} pdg_{5458} pdg_{6277}}{pdg_{3236}^{2}} = pdg_{5156} pdg_{7557}\)
  1. 3246378279:
    \(m\)
    \(pdg_{5156}\)
  1. 2308660627; locally 9159337:
    \(G \frac{m_{\rm Earth}}{r_{\rm Earth}^2} = g_{\rm Earth}\)
    \(\frac{pdg_{5458} pdg_{6277}}{pdg_{3236}^{2}} = pdg_{7557}\)
valid 9407192813:
2308660627:
9407192813:
2308660627:
mass of the Earth replace constant with value
  1. 7112613117; locally 1218257:
    \(m_{\rm Earth} = \frac{(9.80665 m/s^2) r_{\rm Earth}^2}{6.67430*10^{-11}m^3 kg^{-1} s^{-2}}\)
    \(pdg_{5458}\)
  1. 7935917166:
    \(r_{\rm Earth}\)
    \(pdg_{3236}\)
  2. 3723096423:
    \(6.3781*10^6\)
    \(6378100.0\)
  3. 7560908617:
    \(m\)
    \(pdg_{5156}\)
  1. 1132941271; locally 9815516:
    \(m_{\rm Earth} = \frac{(9.80665 m/s^2) (6.3781*10^6 m)^2}{6.67430*10^{-11}m^3 kg^{-1} s^{-2}}\)
    \(pdg_{5458}\)
Nothing to split 7112613117:
1132941271:
7112613117:
1132941271:
mass of the Earth change variable X to Y
  1. 5345738321; locally 3843242:
    \(F = m a\)
    \(pdg_{4202} = pdg_{5156} pdg_{9140}\)
  1. 9881106100:
    \(a\)
    \(pdg_{9140}\)
  2. 5781435087:
    \(g\)
    \(pdg_{1649}\)
  1. 2484824786; locally 6779814:
    \(F = m g\)
    \(pdg_{4202} = pdg_{1649} pdg_{5156}\)
valid 5345738321:
2484824786:
5345738321:
2484824786:
mass of the Earth change three variables in expr
  1. 6935745841; locally 2737346:
    \(F = G \frac{m_1 m_2}{x^2}\)
    \(pdg_{4202} = \frac{pdg_{4851} pdg_{5022} pdg_{6277}}{pdg_{4037}^{2}}\)
  1. 3921072591:
    \(m_1\)
    \(pdg_{5458}\)
  2. 1193980495:
    \(m_{\rm Earth}\)
    \(pdg_{5458}\)
  3. 4651061153:
    \(m_2\)
    \(pdg_{4851}\)
  4. 9903988330:
    \(m\)
    \(pdg_{5156}\)
  5. 3353418803:
    \(x\)
    \(pdg_{4037}\)
  6. 6535639720:
    \(r_{\rm Earth}\)
    \(pdg_{3236}\)
  1. 8661803554; locally 6771172:
    \(F = G \frac{m_{\rm Earth} m}{r_{\rm Earth}^2}\)
    \(pdg_{4202} = \frac{pdg_{5156} pdg_{5458} pdg_{6277}}{pdg_{3236}^{2}}\)
LHS diff is 0 RHS diff is pdg5156*pdg6277*(pdg5022 - pdg5458)/pdg3236**2 6935745841:
8661803554:
6935745841:
8661803554:
mass of the Earth simplify
  1. 1132941271; locally 9815516:
    \(m_{\rm Earth} = \frac{(9.80665 m/s^2) (6.3781*10^6 m)^2}{6.67430*10^{-11}m^3 kg^{-1} s^{-2}}\)
    \(pdg_{5458}\)
  1. 3364286646; locally 1635641:
    \(m_{\rm Earth} = 5.972*10^{24} kg\)
    \(pdg_{5458} = 5.972 \cdot 10^{24} kg\)
Nothing to split 1132941271:
3364286646:
1132941271:
3364286646:
mass of the Earth replace constant with value
  1. 7846240076; locally 2593741:
    \(m_{\rm Earth} = \frac{(9.80665 m/s^2) r_{\rm Earth}^2}{G}\)
    \(pdg_{5458} = \frac{9 pdg_{3236}^{2}}{pdg_{6277}}\)
  1. 7326066466:
    \(G\)
    \(pdg_{6277}\)
  2. 9956609318:
    \(6.67430*10^{-11}\)
    \(6.6743 \cdot 10^{-11}\)
  3. 2957211007:
    \(m^3 kg^{-1} s^{-2}\)
    \(\frac{\text{m}^{3}}{\text{s}^{2}}\)
  1. 7112613117; locally 1218257:
    \(m_{\rm Earth} = \frac{(9.80665 m/s^2) r_{\rm Earth}^2}{6.67430*10^{-11}m^3 kg^{-1} s^{-2}}\)
    \(pdg_{5458}\)
Nothing to split 7846240076:
7112613117:
7846240076:
7112613117:
mass of the Earth declare initial expr
  1. 5345738321; locally 3843242:
    \(F = m a\)
    \(pdg_{4202} = pdg_{5156} pdg_{9140}\)
no validation is available for declarations 5345738321:
5345738321:
mass of the Earth LHS of expr 1 equals LHS of expr 2
  1. 8661803554; locally 6771172:
    \(F = G \frac{m_{\rm Earth} m}{r_{\rm Earth}^2}\)
    \(pdg_{4202} = \frac{pdg_{5156} pdg_{5458} pdg_{6277}}{pdg_{3236}^{2}}\)
  2. 4800170179; locally 6086107:
    \(F = m g_{\rm Earth}\)
    \(pdg_{4202} = pdg_{5156} pdg_{7557}\)
  1. 9407192813; locally 7388891:
    \(G \frac{m_{\rm Earth} m}{r_{\rm Earth}^2} = m g_{\rm Earth}\)
    \(\frac{pdg_{5156} pdg_{5458} pdg_{6277}}{pdg_{3236}^{2}} = pdg_{5156} pdg_{7557}\)
valid 8661803554:
4800170179:
9407192813:
8661803554:
4800170179:
9407192813:
mass of the Earth declare initial expr
  1. 6935745841; locally 2737346:
    \(F = G \frac{m_1 m_2}{x^2}\)
    \(pdg_{4202} = \frac{pdg_{4851} pdg_{5022} pdg_{6277}}{pdg_{4037}^{2}}\)
no validation is available for declarations 6935745841:
6935745841:
mass of the Earth multiply both sides by
  1. 2308660627; locally 9159337:
    \(G \frac{m_{\rm Earth}}{r_{\rm Earth}^2} = g_{\rm Earth}\)
    \(\frac{pdg_{5458} pdg_{6277}}{pdg_{3236}^{2}} = pdg_{7557}\)
  1. 2685587762:
    \(\frac{r_{\rm Earth}^2}{G}\)
    \(\frac{pdg_{3236}^{2}}{pdg_{6277}}\)
  1. 9440616166; locally 9133599:
    \(m_{\rm Earth} = \frac{g_{\rm Earth} r_{\rm Earth}^2}{G}\)
    \(pdg_{5458} = \frac{pdg_{3236}^{2} pdg_{7557}}{pdg_{6277}}\)
valid 2308660627:
9440616166:
2308660627:
9440616166:
mass of the Earth change variable X to Y
  1. 2484824786; locally 6779814:
    \(F = m g\)
    \(pdg_{4202} = pdg_{1649} pdg_{5156}\)
  1. 9355039511:
    \(g\)
    \(pdg_{1649}\)
  2. 2232825726:
    \(g_{\rm Earth}\)
    \(pdg_{7557}\)
  1. 4800170179; locally 6086107:
    \(F = m g_{\rm Earth}\)
    \(pdg_{4202} = pdg_{5156} pdg_{7557}\)
valid 2484824786:
4800170179:
2484824786:
4800170179:
double intensity when phase is coherent (optics) substitute LHS of expr 1 into expr 2
  1. 6774684564; locally 7781977:
    \(\theta = \phi\)
    \(pdg_{1575} = pdg_{8586}\)
  2. 8497631728; locally 5493675:
    \(I = |A|^2 + |B|^2 + |A| |B| 2 \cos( \theta - \phi )\)
    \(pdg_{7882} = 2 \cos{\left(pdg_{1575} - pdg_{8586} \right)} \left|{pdg_{4453}}\right| \left|{pdg_{4698}}\right| + \left|{pdg_{4453}}\right|^{2} + \left|{pdg_{4698}}\right|^{2}\)
  1. 8283354808; locally 2413866:
    \(I_{\rm coherent} = |A|^2 + |B|^2 + |A| |B| 2 \cos( 0 )\)
    \(pdg_{8251} = \left|{pdg_{4453}}\right|^{2} + 2 \left|{pdg_{4453}}\right| \left|{pdg_{4698}}\right| + \left|{pdg_{4698}}\right|^{2}\)
LHS diff is pdg7882 - pdg8251 RHS diff is 0 6774684564:
8497631728:
8283354808:
6774684564:
8497631728:
8283354808:
double intensity when phase is coherent (optics) substitute LHS of expr 1 into expr 2
  1. 7107090465; locally 2303305:
    \(B B^* = |B|^2\)
    \(pdg_{4698} \overline{pdg_{4698}} = \left|{pdg_{4698}}\right|^{2}\)
  2. 5125940051; locally 4729665:
    \(I = |A|^2 + B B^* + A B^* + B A^*\)
    \(pdg_{7882} = pdg_{4453} \overline{pdg_{4698}} + pdg_{4698} \overline{pdg_{4453}} + pdg_{4698} \overline{pdg_{4698}} + \left|{pdg_{4453}}\right|^{2}\)
  1. 1525861537; locally 8296872:
    \(I = |A|^2 + |B|^2 + A B^* + B A^*\)
    \(pdg_{7882} = pdg_{4453} \overline{pdg_{4698}} + pdg_{4698} \overline{pdg_{4453}} + \left|{pdg_{4453}}\right|^{2} + \left|{pdg_{4698}}\right|^{2}\)
valid 7107090465:
5125940051:
1525861537:
7107090465:
5125940051:
1525861537:
double intensity when phase is coherent (optics) substitute LHS of expr 1 into expr 2
  1. 8602221482; locally 4842351:
    \(\langle \cos(\theta - \phi) \rangle = 0\)
    \(\cos{\left(pdg_{1575} - pdg_{8586} \right)} = 0\)
  2. 8497631728; locally 5493675:
    \(I = |A|^2 + |B|^2 + |A| |B| 2 \cos( \theta - \phi )\)
    \(pdg_{7882} = 2 \cos{\left(pdg_{1575} - pdg_{8586} \right)} \left|{pdg_{4453}}\right| \left|{pdg_{4698}}\right| + \left|{pdg_{4453}}\right|^{2} + \left|{pdg_{4698}}\right|^{2}\)
  1. 6240206408; locally 8093224:
    \(I_{\rm incoherent} = |A|^2 + |B|^2\)
    \(pdg_{2435} = \left|{pdg_{4453}}\right|^{2} + \left|{pdg_{4698}}\right|^{2}\)
LHS diff is -pdg2435 + pdg7882 RHS diff is 0 8602221482:
8497631728:
6240206408:
8602221482:
8497631728:
6240206408:
double intensity when phase is coherent (optics) substitute LHS of four expressions into expr
  1. 4192519596; locally 7875296:
    \(B = |B| \exp(i \phi)\)
    \(pdg_{4698} = e^{pdg_{4621} pdg_{8586}} \left|{pdg_{4698}}\right|\)
  2. 4504256452; locally 1174231:
    \(B^* = |B| \exp(-i \phi)\)
    \(\overline{pdg_{4698}} = e^{- pdg_{4621} pdg_{8586}} \left|{pdg_{4698}}\right|\)
  3. 1357848476; locally 2018605:
    \(A = |A| \exp(i \theta)\)
    \(pdg_{4453} = e^{pdg_{1575} pdg_{4621}} \left|{pdg_{4453}}\right|\)
  1. 7621705408; locally 1405078:
    \(I = |A|^2 + |B|^2 + |A| |B| \exp(-i \theta) \exp(i \phi) + |A| |B| \exp(i \theta) \exp(-i \phi)\)
    \(pdg_{7882} = e^{pdg_{1575} pdg_{4621}} e^{- pdg_{4621} pdg_{8586}} \left|{pdg_{4453} pdg_{4698} \left|{\left|{pdg_{4453}}\right| + e^{- pdg_{1575} pdg_{4621}} e^{pdg_{4621} pdg_{8586}} \left|{pdg_{4698}}\right|}\right|}\right| + \left|{pdg_{4453}}\right|^{2} + \left|{pdg_{4698}}\right|^{2}\)
no check performed 4192519596:
4504256452:
1357848476:
7621705408:
4192519596:
4504256452:
1357848476:
7621705408:
double intensity when phase is coherent (optics) change variable X to Y
  1. 4182362050; locally 4809503:
    \(Z = |Z| \exp( i \theta )\)
    \(pdg_{3192} = e^{pdg_{1575} pdg_{4621}} \left|{pdg_{3192}}\right|\)
  1. 2064205392:
    \(A\)
    \(pdg_{4453}\)
  2. 1894894315:
    \(Z\)
    \(pdg_{3192}\)
  1. 1357848476; locally 2018605:
    \(A = |A| \exp(i \theta)\)
    \(pdg_{4453} = e^{pdg_{1575} pdg_{4621}} \left|{pdg_{4453}}\right|\)
LHS diff is pdg3192 - pdg4453 RHS diff is (Abs(pdg3192) - Abs(pdg4453))*exp(pdg1575*pdg4621) 4182362050:
1357848476:
4182362050:
1357848476:
double intensity when phase is coherent (optics) declare initial expr
  1. 2719691582; locally 9739736:
    \(|A| = |B|\)
    \(\left|{pdg_{4453}}\right| = \left|{pdg_{4698}}\right|\)
no validation is available for declarations 2719691582:
2719691582:
double intensity when phase is coherent (optics) simplify
  1. 6529793063; locally 5409843:
    \(I_{\rm incoherent} = |A|^2 + |A|^2\)
    \(pdg_{2435} = 2 \left|{pdg_{4453}}\right|^{2}\)
  1. 3060393541; locally 3246829:
    \(I_{\rm incoherent} = 2|A|^2\)
    \(pdg_{2435} = 2 \left|{pdg_{4453}}\right|^{2}\)
valid 6529793063:
3060393541:
6529793063:
3060393541:
double intensity when phase is coherent (optics) substitute LHS of expr 1 into expr 2
  1. 2700934933; locally 8635275:
    \(2 \cos(x) = \left( \exp(i (\theta - \phi)) + \exp(-i (\theta - \phi)) \right)\)
    \(2 \cos{\left(pdg_{1464} \right)} = e^{pdg_{4621} \left(pdg_{1575} - pdg_{8586}\right)} + e^{- pdg_{4621} \left(pdg_{1575} - pdg_{8586}\right)}\)
  2. 3085575328; locally 5595798:
    \(I = |A|^2 + |B|^2 + |A| |B| \exp(i (\theta - \phi)) + |A| |B| \exp(-i (\theta - \phi))\)
    \(pdg_{7882} = \left|{pdg_{4453}}\right|^{2} + \left|{pdg_{4698}}\right|^{2} + e^{- pdg_{4621} \left(pdg_{1575} - pdg_{8586}\right)} \left|{pdg_{4453} pdg_{4698} \left|{e^{pdg_{4621} \left(pdg_{1575} - pdg_{8586}\right)} \left|{pdg_{4698}}\right| + \left|{pdg_{4453}}\right|}\right|}\right|\)
  1. 8497631728; locally 5493675:
    \(I = |A|^2 + |B|^2 + |A| |B| 2 \cos( \theta - \phi )\)
    \(pdg_{7882} = 2 \cos{\left(pdg_{1575} - pdg_{8586} \right)} \left|{pdg_{4453}}\right| \left|{pdg_{4698}}\right| + \left|{pdg_{4453}}\right|^{2} + \left|{pdg_{4698}}\right|^{2}\)
LHS diff is 0 RHS diff is (-2*exp(pdg4621*(pdg1575 - pdg8586))*cos(pdg1575 - pdg8586)*Abs(pdg4453*pdg4698) + Abs(pdg4453*pdg4698*Abs(exp(pdg4621*(pdg1575 - pdg8586))*Abs(pdg4698) + Abs(pdg4453))))*exp(-pdg4621*(pdg1575 - pdg8586)) 2700934933:
3085575328:
8497631728:
2700934933:
3085575328:
8497631728:
double intensity when phase is coherent (optics) conjugate both sides
  1. 4192519596; locally 7875296:
    \(B = |B| \exp(i \phi)\)
    \(pdg_{4698} = e^{pdg_{4621} pdg_{8586}} \left|{pdg_{4698}}\right|\)
  1. 4504256452; locally 1174231:
    \(B^* = |B| \exp(-i \phi)\)
    \(\overline{pdg_{4698}} = e^{- pdg_{4621} pdg_{8586}} \left|{pdg_{4698}}\right|\)
no check performed 4192519596:
4504256452:
4192519596:
4504256452:
double intensity when phase is coherent (optics) declare final expr
  1. 6556875579; locally 6088608:
    \(\frac{I_{\rm coherent}}{I_{\rm incoherent}} = 2\)
    \(\frac{pdg_{8251}}{pdg_{2435}} = 2\)
no validation is available for declarations 6556875579:
6556875579:
double intensity when phase is coherent (optics) change variable X to Y
  1. 3350830826; locally 4362190:
    \(Z Z^* = |Z|^2\)
    \(pdg_{3192}\)
  1. 9761485403:
    \(Z\)
    \(pdg_{3192}\)
  2. 8710504862:
    \(A\)
    \(pdg_{4453}\)
  1. 4075539836; locally 3404497:
    \(A A^* = |A|^2\)
    \(pdg_{4453} \overline{pdg_{4453}} = \left|{pdg_{4453}}\right|^{2}\)
Nothing to split 3350830826:
4075539836:
3350830826:
4075539836:
double intensity when phase is coherent (optics) declare initial expr
  1. 8396997949; locally 6461198:
    \(I = | A + B |^2\)
    \(pdg_{7882} = \left|{pdg_{4453} + pdg_{4698}}\right|^{2}\)
no validation is available for declarations 8396997949:
8396997949:
double intensity when phase is coherent (optics) simplify
  1. 7621705408; locally 1405078:
    \(I = |A|^2 + |B|^2 + |A| |B| \exp(-i \theta) \exp(i \phi) + |A| |B| \exp(i \theta) \exp(-i \phi)\)
    \(pdg_{7882} = e^{pdg_{1575} pdg_{4621}} e^{- pdg_{4621} pdg_{8586}} \left|{pdg_{4453} pdg_{4698} \left|{\left|{pdg_{4453}}\right| + e^{- pdg_{1575} pdg_{4621}} e^{pdg_{4621} pdg_{8586}} \left|{pdg_{4698}}\right|}\right|}\right| + \left|{pdg_{4453}}\right|^{2} + \left|{pdg_{4698}}\right|^{2}\)
  1. 3085575328; locally 5595798:
    \(I = |A|^2 + |B|^2 + |A| |B| \exp(i (\theta - \phi)) + |A| |B| \exp(-i (\theta - \phi))\)
    \(pdg_{7882} = \left|{pdg_{4453}}\right|^{2} + \left|{pdg_{4698}}\right|^{2} + e^{- pdg_{4621} \left(pdg_{1575} - pdg_{8586}\right)} \left|{pdg_{4453} pdg_{4698} \left|{e^{pdg_{4621} \left(pdg_{1575} - pdg_{8586}\right)} \left|{pdg_{4698}}\right| + \left|{pdg_{4453}}\right|}\right|}\right|\)
LHS diff is 0 RHS diff is -exp(-pdg1575*pdg4621 + pdg4621*pdg8586)*Abs(pdg4453*pdg4698*Abs(exp(pdg1575*pdg4621 - pdg4621*pdg8586)*Abs(pdg4698) + Abs(pdg4453))) + exp(pdg1575*pdg4621 - pdg4621*pdg8586 - re(pdg1575*pdg4621))*Abs(pdg4453*pdg4698*Abs(exp(pdg1575*pdg4621)*Abs(pdg4453) + exp(pdg4621*pdg8586)*Abs(pdg4698))) 7621705408:
3085575328:
7621705408:
3085575328:
double intensity when phase is coherent (optics) change variable X to Y
  1. 4585932229; locally 7002927:
    \(\cos(x) = \frac{1}{2}\left(\exp(i x)+\exp(-i x) \right)\)
    \(\cos{\left(pdg_{1464} \right)} = \frac{e^{pdg_{1464} pdg_{4621}}}{2} + \frac{e^{- pdg_{1464} pdg_{4621}}}{2}\)
  1. 4935235303:
    \(x\)
    \(pdg_{4037}\)
  2. 2293352649:
    \(\theta - \phi\)
    \(pdg_{1575} - pdg_{8586}\)
  1. 3660957533; locally 9190817:
    \(\cos(x) = \frac{1}{2} \left( \exp(i (\theta - \phi)) + \exp(-i (\theta - \phi)) \right)\)
    \(\cos{\left(pdg_{1464} \right)} = \frac{e^{pdg_{4621} \left(pdg_{1575} - pdg_{8586}\right)}}{2} + \frac{e^{- pdg_{4621} \left(pdg_{1575} - pdg_{8586}\right)}}{2}\)
LHS diff is 0 RHS diff is exp(pdg1464*pdg4621)/2 - exp(-pdg1575*pdg4621 + pdg4621*pdg8586)/2 - exp(pdg1575*pdg4621 - pdg4621*pdg8586)/2 + exp(-pdg1464*pdg4621)/2 4585932229:
3660957533:
4585932229:
3660957533:
double intensity when phase is coherent (optics) change variable X to Y
  1. 3350830826; locally 4362190:
    \(Z Z^* = |Z|^2\)
    \(pdg_{3192}\)
  1. 4437214608:
    \(Z\)
    \(pdg_{3192}\)
  2. 5623794884:
    \(A + B\)
    \(pdg_{4453} + pdg_{4698}\)
  1. 2236639474; locally 4137499:
    \((A + B)(A + B)^* = |A + B|^2\)
    \(\left(pdg_{4453} + pdg_{4698}\right)^{2} = \left|{pdg_{4453} + pdg_{4698}}\right|^{2}\)
Nothing to split 3350830826:
2236639474:
3350830826:
2236639474:
double intensity when phase is coherent (optics) divide expr 1 by expr 2
  1. 1172039918; locally 7442815:
    \(I_{\rm coherent} = 4 |A|^2\)
    \(pdg_{8251} = 4 \left|{pdg_{4453}}\right|^{2}\)
  2. 3060393541; locally 3246829:
    \(I_{\rm incoherent} = 2|A|^2\)
    \(pdg_{2435} = 2 \left|{pdg_{4453}}\right|^{2}\)
  1. 6556875579; locally 6088608:
    \(\frac{I_{\rm coherent}}{I_{\rm incoherent}} = 2\)
    \(\frac{pdg_{8251}}{pdg_{2435}} = 2\)
no check performed 1172039918:
3060393541:
6556875579:
1172039918:
3060393541:
6556875579:
double intensity when phase is coherent (optics) change variable X to Y
  1. 3350830826; locally 4362190:
    \(Z Z^* = |Z|^2\)
    \(pdg_{3192}\)
  1. 6529120965:
    \(B\)
    \(pdg_{4698}\)
  2. 1511199318:
    \(Z\)
    \(pdg_{3192}\)
  1. 7107090465; locally 2303305:
    \(B B^* = |B|^2\)
    \(pdg_{4698} \overline{pdg_{4698}} = \left|{pdg_{4698}}\right|^{2}\)
Nothing to split 3350830826:
7107090465:
3350830826:
7107090465:
double intensity when phase is coherent (optics) simplify
  1. 8046208134; locally 2139818:
    \(I_{\rm coherent} = |A|^2 + |A|^2 + |A| |A| 2\)
    \(pdg_{8251} = 4 \left|{pdg_{4453}}\right|^{2}\)
  1. 1172039918; locally 7442815:
    \(I_{\rm coherent} = 4 |A|^2\)
    \(pdg_{8251} = 4 \left|{pdg_{4453}}\right|^{2}\)
valid 8046208134:
1172039918:
8046208134:
1172039918:
double intensity when phase is coherent (optics) multiply expr 1 by expr 2
  1. 4182362050; locally 4809503:
    \(Z = |Z| \exp( i \theta )\)
    \(pdg_{3192} = e^{pdg_{1575} pdg_{4621}} \left|{pdg_{3192}}\right|\)
  2. 1928085940; locally 5663009:
    \(Z^* = |Z| \exp( -i \theta )\)
    \(pdg_{3192}\)
  1. 9191880568; locally 4577339:
    \(Z Z^* = |Z| |Z| \exp( -i \theta ) \exp( i \theta )\)
    \(pdg_{3192}\)
Nothing to split 4182362050:
1928085940:
9191880568:
4182362050:
1928085940:
9191880568:
double intensity when phase is coherent (optics) distribute conjugate to factors
  1. 1020854560; locally 9192406:
    \(I = (A + B)(A + B)^*\)
    \(pdg_{7882} = \left(pdg_{4453} + pdg_{4698}\right) \left(\overline{pdg_{4453}} + \overline{pdg_{4698}}\right)\)
  1. 6306552185; locally 2300056:
    \(I = (A + B)(A^* + B^*)\)
    \(pdg_{7882} = \left(pdg_{4453} + pdg_{4698}\right) \left(\overline{pdg_{4453}} + \overline{pdg_{4698}}\right)\)
no check performed 1020854560:
6306552185:
1020854560:
6306552185:
double intensity when phase is coherent (optics) declare initial expr
  1. 6774684564; locally 7781977:
    \(\theta = \phi\)
    \(pdg_{1575} = pdg_{8586}\)
no validation is available for declarations 6774684564:
6774684564:
double intensity when phase is coherent (optics) declare initial expr
  1. 4182362050; locally 4809503:
    \(Z = |Z| \exp( i \theta )\)
    \(pdg_{3192} = e^{pdg_{1575} pdg_{4621}} \left|{pdg_{3192}}\right|\)
no validation is available for declarations 4182362050:
4182362050:
double intensity when phase is coherent (optics) change two variables in expr
  1. 7607271250; locally 5513927:
    \(\theta\)
    \(pdg_{1575}\)
  1. 4182362050:
    \(Z = |Z| \exp( i \theta )\)
    \(pdg_{3192} = e^{pdg_{1575} pdg_{4621}} \left|{pdg_{3192}}\right|\)
  2. 1742775076:
    \(Z\)
    \(pdg_{3192}\)
  3. 4583868070:
    \(B\)
    \(pdg_{4698}\)
  1. 4192519596; locally 7875296:
    \(B = |B| \exp(i \phi)\)
    \(pdg_{4698} = e^{pdg_{4621} pdg_{8586}} \left|{pdg_{4698}}\right|\)
Nothing to split 7607271250:
4192519596:
7607271250:
4192519596:
double intensity when phase is coherent (optics) substitute LHS of expr 1 into expr 2
  1. 4075539836; locally 3404497:
    \(A A^* = |A|^2\)
    \(pdg_{4453} \overline{pdg_{4453}} = \left|{pdg_{4453}}\right|^{2}\)
  2. 8065128065; locally 9934418:
    \(I = A A^* + B B^* + A B^* + B A^*\)
    \(pdg_{7882} = pdg_{4453} \overline{pdg_{4453}} + pdg_{4453} \overline{pdg_{4698}} + pdg_{4698} \overline{pdg_{4453}} + pdg_{4698} \overline{pdg_{4698}}\)
  1. 5125940051; locally 4729665:
    \(I = |A|^2 + B B^* + A B^* + B A^*\)
    \(pdg_{7882} = pdg_{4453} \overline{pdg_{4698}} + pdg_{4698} \overline{pdg_{4453}} + pdg_{4698} \overline{pdg_{4698}} + \left|{pdg_{4453}}\right|^{2}\)
valid 4075539836:
8065128065:
5125940051:
4075539836:
8065128065:
5125940051:
double intensity when phase is coherent (optics) declare initial expr
  1. 8602221482; locally 4842351:
    \(\langle \cos(\theta - \phi) \rangle = 0\)
    \(\cos{\left(pdg_{1575} - pdg_{8586} \right)} = 0\)
no validation is available for declarations 8602221482:
8602221482:
double intensity when phase is coherent (optics) simplify
  1. 9191880568; locally 4577339:
    \(Z Z^* = |Z| |Z| \exp( -i \theta ) \exp( i \theta )\)
    \(pdg_{3192}\)
  1. 3350830826; locally 4362190:
    \(Z Z^* = |Z|^2\)
    \(pdg_{3192}\)
Nothing to split 9191880568:
3350830826:
9191880568:
3350830826:
double intensity when phase is coherent (optics) substitute LHS of expr 1 into expr 2
  1. 2236639474; locally 4137499:
    \((A + B)(A + B)^* = |A + B|^2\)
    \(\left(pdg_{4453} + pdg_{4698}\right)^{2} = \left|{pdg_{4453} + pdg_{4698}}\right|^{2}\)
  2. 8396997949; locally 6461198:
    \(I = | A + B |^2\)
    \(pdg_{7882} = \left|{pdg_{4453} + pdg_{4698}}\right|^{2}\)
  1. 1020854560; locally 9192406:
    \(I = (A + B)(A + B)^*\)
    \(pdg_{7882} = \left(pdg_{4453} + pdg_{4698}\right) \left(\overline{pdg_{4453}} + \overline{pdg_{4698}}\right)\)
LHS diff is 0 RHS diff is -(pdg4453 + pdg4698)*(conjugate(pdg4453) + conjugate(pdg4698)) + Abs(pdg4453 + pdg4698)**2 2236639474:
8396997949:
1020854560:
2236639474:
8396997949:
1020854560:
double intensity when phase is coherent (optics) substitute LHS of expr 1 into expr 2
  1. 2719691582; locally 9739736:
    \(|A| = |B|\)
    \(\left|{pdg_{4453}}\right| = \left|{pdg_{4698}}\right|\)
  2. 6240206408; locally 8093224:
    \(I_{\rm incoherent} = |A|^2 + |B|^2\)
    \(pdg_{2435} = \left|{pdg_{4453}}\right|^{2} + \left|{pdg_{4698}}\right|^{2}\)
  1. 6529793063; locally 5409843:
    \(I_{\rm incoherent} = |A|^2 + |A|^2\)
    \(pdg_{2435} = 2 \left|{pdg_{4453}}\right|^{2}\)
LHS diff is 0 RHS diff is -2*Abs(pdg4453)**2 + 2*Abs(pdg4698)**2 2719691582:
6240206408:
6529793063:
2719691582:
6240206408:
6529793063:
double intensity when phase is coherent (optics) substitute LHS of expr 1 into expr 2
  1. 2719691582; locally 9739736:
    \(|A| = |B|\)
    \(\left|{pdg_{4453}}\right| = \left|{pdg_{4698}}\right|\)
  2. 8283354808; locally 2413866:
    \(I_{\rm coherent} = |A|^2 + |B|^2 + |A| |B| 2 \cos( 0 )\)
    \(pdg_{8251} = \left|{pdg_{4453}}\right|^{2} + 2 \left|{pdg_{4453}}\right| \left|{pdg_{4698}}\right| + \left|{pdg_{4698}}\right|^{2}\)
  1. 8046208134; locally 2139818:
    \(I_{\rm coherent} = |A|^2 + |A|^2 + |A| |A| 2\)
    \(pdg_{8251} = 4 \left|{pdg_{4453}}\right|^{2}\)
LHS diff is 0 RHS diff is -4*Abs(pdg4453)**2 + 4*Abs(pdg4698)**2 2719691582:
8283354808:
8046208134:
2719691582:
8283354808:
8046208134:
double intensity when phase is coherent (optics) simplify
  1. 6306552185; locally 2300056:
    \(I = (A + B)(A^* + B^*)\)
    \(pdg_{7882} = \left(pdg_{4453} + pdg_{4698}\right) \left(\overline{pdg_{4453}} + \overline{pdg_{4698}}\right)\)
  1. 8065128065; locally 9934418:
    \(I = A A^* + B B^* + A B^* + B A^*\)
    \(pdg_{7882} = pdg_{4453} \overline{pdg_{4453}} + pdg_{4453} \overline{pdg_{4698}} + pdg_{4698} \overline{pdg_{4453}} + pdg_{4698} \overline{pdg_{4698}}\)
valid 6306552185:
8065128065:
6306552185:
8065128065:
double intensity when phase is coherent (optics) conjugate both sides
  1. 4182362050; locally 4809503:
    \(Z = |Z| \exp( i \theta )\)
    \(pdg_{3192} = e^{pdg_{1575} pdg_{4621}} \left|{pdg_{3192}}\right|\)
  1. 1928085940; locally 5663009:
    \(Z^* = |Z| \exp( -i \theta )\)
    \(pdg_{3192}\)
Nothing to split 4182362050:
1928085940:
4182362050:
1928085940:
double intensity when phase is coherent (optics) conjugate both sides
  1. 1357848476; locally 2018605:
    \(A = |A| \exp(i \theta)\)
    \(pdg_{4453} = e^{pdg_{1575} pdg_{4621}} \left|{pdg_{4453}}\right|\)
  1. 6555185548; locally 1584527:
    \(A^* = |A| \exp(-i \theta)\)
    \(\overline{pdg_{4453}} = e^{- pdg_{1575} pdg_{4621}} \left|{pdg_{4453}}\right|\)
no check performed 1357848476:
6555185548:
1357848476:
6555185548:
double intensity when phase is coherent (optics) multiply both sides by
  1. 3660957533; locally 9190817:
    \(\cos(x) = \frac{1}{2} \left( \exp(i (\theta - \phi)) + \exp(-i (\theta - \phi)) \right)\)
    \(\cos{\left(pdg_{1464} \right)} = \frac{e^{pdg_{4621} \left(pdg_{1575} - pdg_{8586}\right)}}{2} + \frac{e^{- pdg_{4621} \left(pdg_{1575} - pdg_{8586}\right)}}{2}\)
  1. 3967985562:
    \(2\)
    \(2\)
  1. 2700934933; locally 8635275:
    \(2 \cos(x) = \left( \exp(i (\theta - \phi)) + \exp(-i (\theta - \phi)) \right)\)
    \(2 \cos{\left(pdg_{1464} \right)} = e^{pdg_{4621} \left(pdg_{1575} - pdg_{8586}\right)} + e^{- pdg_{4621} \left(pdg_{1575} - pdg_{8586}\right)}\)
valid 3660957533:
2700934933:
3660957533:
2700934933:
Lorentz transformation expr 1 is equivalent to expr 2 under the condition
  1. 4287102261; locally 6319661:
    \(x^2 + y^2 + z^2 = c^2 t^2\)
    \(pdg_{4037}^{2} + pdg_{5647}^{2} + pdg_{6728}^{2} = pdg_{1467}^{2} pdg_{4567}^{2}\)
  2. 1586866563; locally 4202425:
    \(\left( \gamma^2 - c^2 \gamma^2 \left( \frac{1-\gamma^2}{\gamma^2} \right)^2 \frac{1}{v^2} \right) x^2 + y^2 + z^2 + \left( -\gamma^2 2 x v t - c^2 \gamma^2 2 t \left( \frac{1-\gamma^2}{\gamma^2} \right) \frac{x}{v} \right) = t^2 \left( c^2 \gamma^2 - \gamma^2 v^2 \right)\)
    \(- 2 pdg_{1357} pdg_{1467} pdg_{1790}^{2} pdg_{4037} + pdg_{4037}^{2} \left(pdg_{1790}^{2} - \frac{pdg_{4567}^{2} \left(1 - pdg_{1790}^{2}\right)^{2}}{pdg_{1357}^{2} pdg_{1790}^{2}}\right) + pdg_{5647}^{2} + pdg_{6728}^{2} - \frac{2 pdg_{1467} pdg_{4037} pdg_{4567}^{2} \left(1 - pdg_{1790}^{2}\right)}{pdg_{1357}} = pdg_{1467}^{2} \left(- pdg_{1357}^{2} pdg_{1790}^{2} + pdg_{1790}^{2} pdg_{4567}^{2}\right)\)
  1. 1916173354; locally 3640931:
    \(-\gamma^2 v^2 + c^2 \gamma^2 = c^2\)
    \(- pdg_{1357}^{2} pdg_{1790}^{2} + pdg_{1790}^{2} pdg_{4567}^{2} = pdg_{4567}^{2}\)
no check performed 4287102261:
1586866563:
1916173354:
4287102261:
1586866563:
1916173354:
based on the comparison of the t^2 terms
Lorentz transformation declare initial expr
  1. 4662369843; locally 5427510:
    \(x' = \gamma (x - v t)\)
    \(pdg_{5456} = pdg_{1790} \left(- pdg_{1357} pdg_{1467} + pdg_{1464}\right)\)
no validation is available for declarations 4662369843:
4662369843:
equation 1-13 on page 21 in \cite{1999_Tipler_Llewellyn}
Lorentz transformation declare assumption
  1. 8515803375; locally 7666907:
    \(z' = z\)
    \(pdg_{4306} = pdg_{6728}\)
no validation is available for declarations 8515803375:
8515803375:
Lorentz transformation swap LHS with RHS
  1. 8730201316; locally 7546640:
    \(\frac{\gamma x (1 - \gamma^2 )}{\gamma^2 v} + \gamma t = t'\)
    \(pdg_{1790}\)
  1. 5148266645; locally 1693888:
    \(t' = \frac{\gamma x (1 - \gamma^2 )}{\gamma^2 v} + \gamma t\)
    \(pdg_{1790}\)
Nothing to split 8730201316:
5148266645:
8730201316:
5148266645:
Lorentz transformation declare initial expr
  1. 4287102261; locally 6319661:
    \(x^2 + y^2 + z^2 = c^2 t^2\)
    \(pdg_{4037}^{2} + pdg_{5647}^{2} + pdg_{6728}^{2} = pdg_{1467}^{2} pdg_{4567}^{2}\)
no validation is available for declarations 4287102261:
4287102261:
Lorentz transformation add X to both sides
  1. 5763749235; locally 8195408:
    \(-c^2 + c^2 \gamma^2 = v^2 \gamma^2\)
    \(pdg_{1790}^{2} pdg_{4567}^{2} - pdg_{4567}^{2} = pdg_{1357}^{2} pdg_{1790}^{2}\)
  1. 6408214498:
    \(c^2\)
    \(pdg_{4567}^{2}\)
  1. 2999795755; locally 6913493:
    \(c^2 \gamma^2 = v^2 \gamma^2 + c^2\)
    \(pdg_{1790}^{2} pdg_{4567}^{2} = pdg_{1357}^{2} pdg_{1790}^{2} + pdg_{4567}^{2}\)
valid 5763749235:
2999795755:
5763749235:
2999795755:
Lorentz transformation subtract X from both sides
  1. 7741202861; locally 6463955:
    \(x = \gamma^2 x - \gamma^2 v t + \gamma v t'\)
    \(pdg_{4037} = - pdg_{1357} pdg_{1467} pdg_{1790}^{2} + pdg_{1357} pdg_{1790} pdg_{4989} + pdg_{1790}^{2} pdg_{4037}\)
  1. 7337056406:
    \(\gamma^2 x\)
    \(pdg_{1790}^{2} pdg_{4037}\)
  1. 4139999399; locally 8494407:
    \(x - \gamma^2 x = - \gamma^2 v t + \gamma v t'\)
    \(- pdg_{1790}^{2} pdg_{4037} + pdg_{4037} = - pdg_{1357} pdg_{1467} pdg_{1790}^{2} + pdg_{1357} pdg_{1790} pdg_{4989}\)
valid 7741202861:
4139999399:
7741202861:
4139999399:
Lorentz transformation divide both sides by
  1. 2417941373; locally 7403799:
    \(- c^2 \gamma^2 \frac{(1-\gamma^2)^2}{v^2 \gamma^4} = 1 - \gamma^2\)
    \(- \frac{pdg_{4567}^{2} \left(1 - pdg_{1790}^{2}\right)^{2}}{pdg_{1357}^{2} pdg_{1790}^{2}} = 1 - pdg_{1790}^{2}\)
  1. 5787469164:
    \(1 - \gamma^2\)
    \(1 - pdg_{1790}^{2}\)
  1. 1639827492; locally 4052253:
    \(- c^2 \frac{(1-\gamma^2)}{v^2 \gamma^2} = 1\)
    \(- \frac{pdg_{4567}^{2} \left(1 - pdg_{1790}^{2}\right)}{pdg_{1357}^{2} pdg_{1790}^{2}} = 1\)
valid 2417941373:
1639827492:
2417941373:
1639827492:
Lorentz transformation multiply both sides by
  1. 1639827492; locally 4052253:
    \(- c^2 \frac{(1-\gamma^2)}{v^2 \gamma^2} = 1\)
    \(- \frac{pdg_{4567}^{2} \left(1 - pdg_{1790}^{2}\right)}{pdg_{1357}^{2} pdg_{1790}^{2}} = 1\)
  1. 5669500954:
    \(v^2 \gamma^2\)
    \(pdg_{1357}^{2} pdg_{1790}^{2}\)
  1. 5763749235; locally 8195408:
    \(-c^2 + c^2 \gamma^2 = v^2 \gamma^2\)
    \(pdg_{1790}^{2} pdg_{4567}^{2} - pdg_{4567}^{2} = pdg_{1357}^{2} pdg_{1790}^{2}\)
valid 1639827492:
5763749235:
1639827492:
5763749235:
Lorentz transformation simplify
  1. 1974334644; locally 5995189:
    \(\frac{x (1 - \gamma^2 )}{\gamma v} + \frac{\gamma^2 v t}{\gamma v} = t'\)
    \(pdg_{1467} pdg_{1790} + \frac{\operatorname{pdg}_{4037}{\left(1 - pdg_{1790}^{2} \right)}}{pdg_{1357} pdg_{1790}} = pdg_{4989}\)
  1. 8730201316; locally 7546640:
    \(\frac{\gamma x (1 - \gamma^2 )}{\gamma^2 v} + \gamma t = t'\)
    \(pdg_{1790}\)
Nothing to split 1974334644:
8730201316:
1974334644:
8730201316:
Lorentz transformation simplify
  1. 3426941928; locally 4471422:
    \(x = \gamma ( \gamma (x - v t) + v t' )\)
    \(pdg_{4037} = pdg_{1790} \left(pdg_{1357} pdg_{4989} + pdg_{1790} \left(- pdg_{1357} pdg_{1467} + pdg_{4037}\right)\right)\)
  1. 2096918413; locally 7169020:
    \(x = \gamma ( \gamma x - \gamma v t + v t' )\)
    \(pdg_{4037} = \operatorname{pdg}_{1790}{\left(- pdg_{1357} pdg_{1467} pdg_{1790} + pdg_{1357} pdg_{4989} + pdg_{1790} pdg_{4037} \right)}\)
LHS diff is 0 RHS diff is pdg1790*(pdg1357*pdg4989 - pdg1790*(pdg1357*pdg1467 - pdg4037)) - pdg1790(-pdg1357*pdg1467*pdg1790 + pdg1357*pdg4989 + pdg1790*pdg4037) 3426941928:
2096918413:
3426941928:
2096918413:
Lorentz transformation expr 1 is equivalent to expr 2 under the condition
  1. 4287102261; locally 6319661:
    \(x^2 + y^2 + z^2 = c^2 t^2\)
    \(pdg_{4037}^{2} + pdg_{5647}^{2} + pdg_{6728}^{2} = pdg_{1467}^{2} pdg_{4567}^{2}\)
  2. 1586866563; locally 4202425:
    \(\left( \gamma^2 - c^2 \gamma^2 \left( \frac{1-\gamma^2}{\gamma^2} \right)^2 \frac{1}{v^2} \right) x^2 + y^2 + z^2 + \left( -\gamma^2 2 x v t - c^2 \gamma^2 2 t \left( \frac{1-\gamma^2}{\gamma^2} \right) \frac{x}{v} \right) = t^2 \left( c^2 \gamma^2 - \gamma^2 v^2 \right)\)
    \(- 2 pdg_{1357} pdg_{1467} pdg_{1790}^{2} pdg_{4037} + pdg_{4037}^{2} \left(pdg_{1790}^{2} - \frac{pdg_{4567}^{2} \left(1 - pdg_{1790}^{2}\right)^{2}}{pdg_{1357}^{2} pdg_{1790}^{2}}\right) + pdg_{5647}^{2} + pdg_{6728}^{2} - \frac{2 pdg_{1467} pdg_{4037} pdg_{4567}^{2} \left(1 - pdg_{1790}^{2}\right)}{pdg_{1357}} = pdg_{1467}^{2} \left(- pdg_{1357}^{2} pdg_{1790}^{2} + pdg_{1790}^{2} pdg_{4567}^{2}\right)\)
  1. 3182633789; locally 2562123:
    \(\gamma^2 - c^2 \gamma^2 \frac{(1-\gamma^2)^2}{v^2 \gamma^4} = 1\)
    \(pdg_{1790}^{2} - \frac{pdg_{4567}^{2} \left(1 - pdg_{1790}^{2}\right)^{2}}{pdg_{1357}^{2} pdg_{1790}^{2}} = 1\)
no check performed 4287102261:
1586866563:
3182633789:
4287102261:
1586866563:
3182633789:
based on the comparison of the x^2 terms
Lorentz transformation subtract X from both sides
  1. 3182633789; locally 2562123:
    \(\gamma^2 - c^2 \gamma^2 \frac{(1-\gamma^2)^2}{v^2 \gamma^4} = 1\)
    \(pdg_{1790}^{2} - \frac{pdg_{4567}^{2} \left(1 - pdg_{1790}^{2}\right)^{2}}{pdg_{1357}^{2} pdg_{1790}^{2}} = 1\)
  1. 5284610349:
    \(\gamma^2\)
    \(pdg_{1790}^{2}\)
  1. 2417941373; locally 7403799:
    \(- c^2 \gamma^2 \frac{(1-\gamma^2)^2}{v^2 \gamma^4} = 1 - \gamma^2\)
    \(- \frac{pdg_{4567}^{2} \left(1 - pdg_{1790}^{2}\right)^{2}}{pdg_{1357}^{2} pdg_{1790}^{2}} = 1 - pdg_{1790}^{2}\)
valid 3182633789:
2417941373:
3182633789:
2417941373:
solve for \gamma
Lorentz transformation square root both sides
  1. 7906112355; locally 7595841:
    \(\gamma^2 = \frac{c^2}{c^2 - \gamma^2}\)
    \(pdg_{1790}^{2} = \frac{pdg_{4567}^{2}}{- pdg_{1790}^{2} + pdg_{4567}^{2}}\)
  1. 1528310784; locally 3040283:
    \(\gamma = \frac{1}{\sqrt{1-\frac{v^2}{c^2}}}\)
    \(pdg_{1790} = \frac{1}{\sqrt{- \frac{pdg_{1357}^{2}}{pdg_{4567}^{2}} + 1}}\)
  2. 8360117126; locally 6010461:
    \(\gamma = \frac{-1}{\sqrt{1-\frac{v^2}{c^2}}}\)
    \(pdg_{1790} = - \frac{1}{\sqrt{- \frac{pdg_{1357}^{2}}{pdg_{4567}^{2}} + 1}}\)
no check performed 7906112355:
1528310784:
8360117126:
7906112355:
1528310784:
8360117126:
Lorentz transformation simplify
  1. 9805063945; locally 4326342:
    \(\gamma^2 (x - v t)^2 + y^2 + z^2 = c^2 \gamma^2 \left( t + \frac{ 1 - \gamma^2 }{ \gamma^2 } \frac{x}{v} \right)^2\)
    \(pdg_{1790}^{2} \left(- pdg_{1357} pdg_{1467} + pdg_{4037}\right)^{2} + pdg_{5647}^{2} + pdg_{6728}^{2} = pdg_{1790}^{2} pdg_{4567}^{2} \left(pdg_{1467} + \frac{pdg_{4037} \left(1 - pdg_{1790}^{2}\right)}{pdg_{1357} pdg_{1790}^{2}}\right)^{2}\)
  1. 1935543849; locally 6066191:
    \(\gamma^2 x^2 - \gamma^2 2 x v t + \gamma^2 v^2 t^2 + y^2 + z^2 = c^2 \gamma^2 \left(\frac{1-\gamma^2}{\gamma^2}\right)\frac{x^2}{\gamma^2} + c^2 \gamma^2 2 t \left(\frac{1-\gamma^2}{\gamma^2}\right)\frac{x}{\gamma} + c^2 \gamma^2 t^2\)
    \(pdg_{1357}^{2} pdg_{1467}^{2} pdg_{1790}^{2} - 2 pdg_{1357} pdg_{1467} pdg_{1790}^{2} pdg_{4037} + pdg_{1790}^{2} pdg_{4037}^{2} + pdg_{5647}^{2} + pdg_{6728}^{2} = pdg_{1467}^{2} pdg_{1790}^{2} pdg_{4567}^{2} + \frac{2 pdg_{1467} pdg_{4037} pdg_{4567}^{2} \left(1 - pdg_{1790}^{2}\right)}{pdg_{1790}} + \frac{pdg_{4037}^{2} pdg_{4567}^{2} \left(1 - pdg_{1790}^{2}\right)}{pdg_{1790}^{2}}\)
LHS diff is 0 RHS diff is pdg4567**2*(-pdg1357**2*pdg1467**2*pdg1790**4 + 2*pdg1357**2*pdg1467*pdg1790*pdg4037*(pdg1790**2 - 1) + pdg1357**2*pdg4037**2*(pdg1790**2 - 1) + (pdg1357*pdg1467*pdg1790**2 - pdg4037*(pdg1790**2 - 1))**2)/(pdg1357**2*pdg1790**2) 9805063945:
1935543849:
9805063945:
1935543849:
expanded the squared terms
Lorentz transformation declare final expr
  1. 1528310784; locally 3040283:
    \(\gamma = \frac{1}{\sqrt{1-\frac{v^2}{c^2}}}\)
    \(pdg_{1790} = \frac{1}{\sqrt{- \frac{pdg_{1357}^{2}}{pdg_{4567}^{2}} + 1}}\)
no validation is available for declarations 1528310784:
1528310784:
Lorentz factor definition
Lorentz transformation declare initial expr
  1. 1201689765; locally 5649086:
    \(x'^2 + y'^2 + z'^2 = c^2 t'^2\)
    \(pdg_{1888}^{2} + pdg_{4306}^{2} + pdg_{5456}^{2} = pdg_{4567}^{2} pdg_{4989}^{2}\)
no validation is available for declarations 1201689765:
1201689765:
Lorentz transformation simplify
  1. 2096918413; locally 7169020:
    \(x = \gamma ( \gamma x - \gamma v t + v t' )\)
    \(pdg_{4037} = \operatorname{pdg}_{1790}{\left(- pdg_{1357} pdg_{1467} pdg_{1790} + pdg_{1357} pdg_{4989} + pdg_{1790} pdg_{4037} \right)}\)
  1. 7741202861; locally 6463955:
    \(x = \gamma^2 x - \gamma^2 v t + \gamma v t'\)
    \(pdg_{4037} = - pdg_{1357} pdg_{1467} pdg_{1790}^{2} + pdg_{1357} pdg_{1790} pdg_{4989} + pdg_{1790}^{2} pdg_{4037}\)
LHS diff is 0 RHS diff is pdg1357*pdg1467*pdg1790**2 - pdg1357*pdg1790*pdg4989 - pdg1790**2*pdg4037 + pdg1790(-pdg1357*pdg1467*pdg1790 + pdg1357*pdg4989 + pdg1790*pdg4037) 2096918413:
7741202861:
2096918413:
7741202861:
Lorentz transformation declare assumption
  1. 7057864873; locally 6316097:
    \(y' = y\)
    \(pdg_{1888} = pdg_{5647}\)
no validation is available for declarations 7057864873:
7057864873:
Lorentz transformation substitute LHS of expr 1 into expr 2
  1. 4662369843; locally 5427510:
    \(x' = \gamma (x - v t)\)
    \(pdg_{5456} = pdg_{1790} \left(- pdg_{1357} pdg_{1467} + pdg_{1464}\right)\)
  2. 2983053062; locally 2283140:
    \(x = \gamma (x' + v t')\)
    \(pdg_{4037} = pdg_{1790} \left(pdg_{1357} pdg_{4989} + pdg_{5456}\right)\)
  1. 3426941928; locally 4471422:
    \(x = \gamma ( \gamma (x - v t) + v t' )\)
    \(pdg_{4037} = pdg_{1790} \left(pdg_{1357} pdg_{4989} + pdg_{1790} \left(- pdg_{1357} pdg_{1467} + pdg_{4037}\right)\right)\)
LHS diff is 0 RHS diff is pdg1790**2*(pdg1464 - pdg4037) 4662369843:
2983053062:
3426941928:
4662369843:
2983053062:
3426941928:
solve output expr for t'
Lorentz transformation divide both sides by
  1. 9409776983; locally 6047713:
    \(x (1 - \gamma^2 ) + \gamma^2 v t = \gamma v t'\)
    \(pdg_{1790}\)
  1. 2226340358:
    \(\gamma v\)
    \(pdg_{1357} pdg_{1790}\)
  1. 1974334644; locally 5995189:
    \(\frac{x (1 - \gamma^2 )}{\gamma v} + \frac{\gamma^2 v t}{\gamma v} = t'\)
    \(pdg_{1467} pdg_{1790} + \frac{\operatorname{pdg}_{4037}{\left(1 - pdg_{1790}^{2} \right)}}{pdg_{1357} pdg_{1790}} = pdg_{4989}\)
Nothing to split 9409776983:
1974334644:
9409776983:
1974334644:
Lorentz transformation simplify
  1. 1935543849; locally 6066191:
    \(\gamma^2 x^2 - \gamma^2 2 x v t + \gamma^2 v^2 t^2 + y^2 + z^2 = c^2 \gamma^2 \left(\frac{1-\gamma^2}{\gamma^2}\right)\frac{x^2}{\gamma^2} + c^2 \gamma^2 2 t \left(\frac{1-\gamma^2}{\gamma^2}\right)\frac{x}{\gamma} + c^2 \gamma^2 t^2\)
    \(pdg_{1357}^{2} pdg_{1467}^{2} pdg_{1790}^{2} - 2 pdg_{1357} pdg_{1467} pdg_{1790}^{2} pdg_{4037} + pdg_{1790}^{2} pdg_{4037}^{2} + pdg_{5647}^{2} + pdg_{6728}^{2} = pdg_{1467}^{2} pdg_{1790}^{2} pdg_{4567}^{2} + \frac{2 pdg_{1467} pdg_{4037} pdg_{4567}^{2} \left(1 - pdg_{1790}^{2}\right)}{pdg_{1790}} + \frac{pdg_{4037}^{2} pdg_{4567}^{2} \left(1 - pdg_{1790}^{2}\right)}{pdg_{1790}^{2}}\)
  1. 1586866563; locally 4202425:
    \(\left( \gamma^2 - c^2 \gamma^2 \left( \frac{1-\gamma^2}{\gamma^2} \right)^2 \frac{1}{v^2} \right) x^2 + y^2 + z^2 + \left( -\gamma^2 2 x v t - c^2 \gamma^2 2 t \left( \frac{1-\gamma^2}{\gamma^2} \right) \frac{x}{v} \right) = t^2 \left( c^2 \gamma^2 - \gamma^2 v^2 \right)\)
    \(- 2 pdg_{1357} pdg_{1467} pdg_{1790}^{2} pdg_{4037} + pdg_{4037}^{2} \left(pdg_{1790}^{2} - \frac{pdg_{4567}^{2} \left(1 - pdg_{1790}^{2}\right)^{2}}{pdg_{1357}^{2} pdg_{1790}^{2}}\right) + pdg_{5647}^{2} + pdg_{6728}^{2} - \frac{2 pdg_{1467} pdg_{4037} pdg_{4567}^{2} \left(1 - pdg_{1790}^{2}\right)}{pdg_{1357}} = pdg_{1467}^{2} \left(- pdg_{1357}^{2} pdg_{1790}^{2} + pdg_{1790}^{2} pdg_{4567}^{2}\right)\)
LHS diff is pdg1357**2*pdg1467**2*pdg1790**2 - 2*pdg1467*pdg1790**2*pdg4037*pdg4567**2/pdg1357 + 2*pdg1467*pdg4037*pdg4567**2/pdg1357 + pdg4037**2*pdg4567**2*(pdg1790**2 - 1)**2/(pdg1357**2*pdg1790**2) RHS diff is (pdg1357**2*pdg1467**2*pdg1790**4 - 2*pdg1467*pdg1790*pdg4037*pdg4567**2*(pdg1790**2 - 1) - pdg4037**2*pdg4567**2*(pdg1790**2 - 1))/pdg1790**2 1935543849:
1586866563:
1935543849:
1586866563:
grouped by terms for x^2, xt, and t^2
Lorentz transformation factor out X from LHS
  1. 2542420160; locally 5207615:
    \(c^2 \gamma^2 - v^2 \gamma^2 = c^2\)
    \(- pdg_{1357}^{2} pdg_{1790}^{2} + pdg_{1790}^{2} pdg_{4567}^{2} = pdg_{4567}^{2}\)
  1. 7743841045:
    \(\gamma^2\)
    \(pdg_{1790}^{2}\)
  1. 7513513483; locally 8842089:
    \(\gamma^2 (c^2 - v^2) = c^2\)
    \(pdg_{1790}^{2} \left(- pdg_{1357}^{2} + pdg_{4567}^{2}\right) = pdg_{4567}^{2}\)
valid 2542420160:
7513513483:
2542420160:
7513513483:
Lorentz transformation expr 1 is equivalent to expr 2 under the condition
  1. 4287102261; locally 6319661:
    \(x^2 + y^2 + z^2 = c^2 t^2\)
    \(pdg_{4037}^{2} + pdg_{5647}^{2} + pdg_{6728}^{2} = pdg_{1467}^{2} pdg_{4567}^{2}\)
  2. 1586866563; locally 4202425:
    \(\left( \gamma^2 - c^2 \gamma^2 \left( \frac{1-\gamma^2}{\gamma^2} \right)^2 \frac{1}{v^2} \right) x^2 + y^2 + z^2 + \left( -\gamma^2 2 x v t - c^2 \gamma^2 2 t \left( \frac{1-\gamma^2}{\gamma^2} \right) \frac{x}{v} \right) = t^2 \left( c^2 \gamma^2 - \gamma^2 v^2 \right)\)
    \(- 2 pdg_{1357} pdg_{1467} pdg_{1790}^{2} pdg_{4037} + pdg_{4037}^{2} \left(pdg_{1790}^{2} - \frac{pdg_{4567}^{2} \left(1 - pdg_{1790}^{2}\right)^{2}}{pdg_{1357}^{2} pdg_{1790}^{2}}\right) + pdg_{5647}^{2} + pdg_{6728}^{2} - \frac{2 pdg_{1467} pdg_{4037} pdg_{4567}^{2} \left(1 - pdg_{1790}^{2}\right)}{pdg_{1357}} = pdg_{1467}^{2} \left(- pdg_{1357}^{2} pdg_{1790}^{2} + pdg_{1790}^{2} pdg_{4567}^{2}\right)\)
  1. 2076171250; locally 6685577:
    \(-\gamma^2 2 x v t - c^2 \gamma^2 2 t \left( \frac{1-\gamma^2}{\gamma^2} \right) \frac{x}{v} = 0\)
    \(pdg_{1790}\)
Nothing to split 4287102261:
1586866563:
2076171250:
4287102261:
1586866563:
2076171250:
based on the comparison of the (x t) terms
Lorentz transformation substitute LHS of four expressions into expr
  1. 8515803375; locally 7666907:
    \(z' = z\)
    \(pdg_{4306} = pdg_{6728}\)
  2. 7057864873; locally 6316097:
    \(y' = y\)
    \(pdg_{1888} = pdg_{5647}\)
  3. 5148266645; locally 1693888:
    \(t' = \frac{\gamma x (1 - \gamma^2 )}{\gamma^2 v} + \gamma t\)
    \(pdg_{1790}\)
  4. 4662369843; locally 5427510:
    \(x' = \gamma (x - v t)\)
    \(pdg_{5456} = pdg_{1790} \left(- pdg_{1357} pdg_{1467} + pdg_{1464}\right)\)
  5. 1201689765; locally 5649086:
    \(x'^2 + y'^2 + z'^2 = c^2 t'^2\)
    \(pdg_{1888}^{2} + pdg_{4306}^{2} + pdg_{5456}^{2} = pdg_{4567}^{2} pdg_{4989}^{2}\)
  1. 9805063945; locally 4326342:
    \(\gamma^2 (x - v t)^2 + y^2 + z^2 = c^2 \gamma^2 \left( t + \frac{ 1 - \gamma^2 }{ \gamma^2 } \frac{x}{v} \right)^2\)
    \(pdg_{1790}^{2} \left(- pdg_{1357} pdg_{1467} + pdg_{4037}\right)^{2} + pdg_{5647}^{2} + pdg_{6728}^{2} = pdg_{1790}^{2} pdg_{4567}^{2} \left(pdg_{1467} + \frac{pdg_{4037} \left(1 - pdg_{1790}^{2}\right)}{pdg_{1357} pdg_{1790}^{2}}\right)^{2}\)
Nothing to split 8515803375:
7057864873:
5148266645:
4662369843:
1201689765:
9805063945:
8515803375:
7057864873:
5148266645:
4662369843:
1201689765:
9805063945:
Lorentz transformation add X to both sides
  1. 9031609275; locally 3992172:
    \(x (1 - \gamma^2 ) = - \gamma^2 v t + \gamma v t'\)
    \(pdg_{1790}\)
  1. 8014566709:
    \(\gamma^2 v t\)
    \(pdg_{1357} pdg_{1467} pdg_{1790}^{2}\)
  1. 9409776983; locally 6047713:
    \(x (1 - \gamma^2 ) + \gamma^2 v t = \gamma v t'\)
    \(pdg_{1790}\)
Nothing to split 9031609275:
9409776983:
9031609275:
9409776983:
Lorentz transformation subtract X from both sides
  1. 2999795755; locally 6913493:
    \(c^2 \gamma^2 = v^2 \gamma^2 + c^2\)
    \(pdg_{1790}^{2} pdg_{4567}^{2} = pdg_{1357}^{2} pdg_{1790}^{2} + pdg_{4567}^{2}\)
  1. 3412946408:
    \(v^2 \gamma^2\)
    \(pdg_{1357}^{2} pdg_{1790}^{2}\)
  1. 2542420160; locally 5207615:
    \(c^2 \gamma^2 - v^2 \gamma^2 = c^2\)
    \(- pdg_{1357}^{2} pdg_{1790}^{2} + pdg_{1790}^{2} pdg_{4567}^{2} = pdg_{4567}^{2}\)
valid 2999795755:
2542420160:
2999795755:
2542420160:
Lorentz transformation divide both sides by
  1. 7513513483; locally 8842089:
    \(\gamma^2 (c^2 - v^2) = c^2\)
    \(pdg_{1790}^{2} \left(- pdg_{1357}^{2} + pdg_{4567}^{2}\right) = pdg_{4567}^{2}\)
  1. 8571466509:
    \(c^2 - \gamma^2\)
    \(- pdg_{1790}^{2} + pdg_{4567}^{2}\)
  1. 7906112355; locally 7595841:
    \(\gamma^2 = \frac{c^2}{c^2 - \gamma^2}\)
    \(pdg_{1790}^{2} = \frac{pdg_{4567}^{2}}{- pdg_{1790}^{2} + pdg_{4567}^{2}}\)
LHS diff is pdg1790**2*(pdg1357**2 - pdg1790**2)/(pdg1790**2 - pdg4567**2) RHS diff is 0 7513513483:
7906112355:
7513513483:
7906112355:
Lorentz transformation factor out X from LHS
  1. 4139999399; locally 8494407:
    \(x - \gamma^2 x = - \gamma^2 v t + \gamma v t'\)
    \(- pdg_{1790}^{2} pdg_{4037} + pdg_{4037} = - pdg_{1357} pdg_{1467} pdg_{1790}^{2} + pdg_{1357} pdg_{1790} pdg_{4989}\)
  1. 3495403335:
    \(x\)
    \(pdg_{1464}\)
  1. 9031609275; locally 3992172:
    \(x (1 - \gamma^2 ) = - \gamma^2 v t + \gamma v t'\)
    \(pdg_{1790}\)
Nothing to split 4139999399:
9031609275:
4139999399:
9031609275:
Lorentz transformation declare initial expr
  1. 2983053062; locally 2283140:
    \(x = \gamma (x' + v t')\)
    \(pdg_{4037} = pdg_{1790} \left(pdg_{1357} pdg_{4989} + pdg_{5456}\right)\)
no validation is available for declarations 2983053062:
2983053062:
equation 1-14 on page 21 in \cite{1999_Tipler_Llewellyn}
upper limit on velocity in condensed matter declare initial expr
  1. 8106885760; locally 9431422:
    \(\alpha = \frac{1}{4 \pi \epsilon_0} \frac{e^2}{\hbar c}\)
    \(pdg_{1370} = \frac{pdg_{1999}^{2}}{4 pdg_{1054} pdg_{3141} pdg_{4567} pdg_{7940}}\)
no validation is available for declarations 8106885760:
8106885760:
upper limit on velocity in condensed matter multiply both sides by
  1. 8106885760; locally 9431422:
    \(\alpha = \frac{1}{4 \pi \epsilon_0} \frac{e^2}{\hbar c}\)
    \(pdg_{1370} = \frac{pdg_{1999}^{2}}{4 pdg_{1054} pdg_{3141} pdg_{4567} pdg_{7940}}\)
  1. 8857931498:
    \(c\)
    \(pdg_{4567}\)
  1. 5838268428; locally 6181437:
    \(\alpha c = \frac{1}{4 \pi \epsilon_0} \frac{e^2}{\hbar}\)
    \(pdg_{1370} pdg_{4567} = \frac{pdg_{1999}^{2}}{4 pdg_{1054} pdg_{3141} pdg_{7940}}\)
valid 8106885760:
5838268428:
8106885760:
5838268428:
upper limit on velocity in condensed matter declare initial expr
  1. 1556389363; locally 5961293:
    \(E_{\rm Rydberg} = \frac{ m_e e^4 }{ 32 \pi^2 \epsilon_0^2 \hbar^2}\)
    \(pdg_{9838} = \frac{pdg_{1999}^{4} pdg_{2515}}{32 pdg_{1054}^{2} pdg_{3141}^{2} pdg_{7940}^{2}}\)
no validation is available for declarations 1556389363:
1556389363:
upper limit on velocity in condensed matter substitute RHS of expr 1 into expr 2
  1. 8688588981; locally 7834577:
    \(a^3 \rho = m\)
    \(pdg_{3935} pdg_{5854}^{3} = pdg_{9863}\)
  2. 8090924099; locally 5077893:
    \(v = \sqrt{ \left( f\frac{E}{a^3} \right) \frac{1}{\rho} }\)
    \(pdg_{2077} = \sqrt{\frac{pdg_{2241} pdg_{6235}}{pdg_{3935} pdg_{5854}^{3}}}\)
  1. 7837519722; locally 5020923:
    \(v = \sqrt{f} \sqrt{\frac{E}{m}}\)
    \(pdg_{2077} = \sqrt{pdg_{6235}} \sqrt{\frac{pdg_{2241}}{pdg_{9863}}}\)
LHS diff is 0 RHS diff is -sqrt(pdg6235)*sqrt(pdg2241/pdg9863) + sqrt(pdg2241*pdg6235/(pdg3935*pdg5854**3)) 8688588981:
8090924099:
7837519722:
8688588981:
8090924099:
7837519722:
upper limit on velocity in condensed matter maximum of expr
  1. 2897612567; locally 8323044:
    \(v = \alpha c \sqrt{ \frac{m_e}{A m_p} }\)
    \(pdg_{2077} = pdg_{1370} pdg_{4567} \sqrt{\frac{pdg_{2515}}{pdg_{3285} pdg_{5916}}}\)
  1. 6259833695:
    \(A\)
    \(pdg_{3285}\)
  1. 7701249282; locally 9568206:
    \(v_u = \alpha c \sqrt{ \frac{m_e}{m_p} }\)
    \(pdg_{4635} = pdg_{1370} pdg_{4567} \sqrt{\frac{pdg_{2515}}{pdg_{5916}}}\)
no check performed 2897612567:
7701249282:
2897612567:
7701249282:
upper limit on velocity in condensed matter substitute LHS of expr 1 into expr 2
  1. 5646314683; locally 6979804:
    \(m = A m_p\)
    \(pdg_{9863} = pdg_{3285} pdg_{5916}\)
  2. 5789289057; locally 5883117:
    \(v = \alpha c \sqrt{ \frac{m_e}{2 m} }\)
    \(pdg_{2077} = \frac{\sqrt{2} pdg_{1370} pdg_{4567} \sqrt{\frac{pdg_{2515}}{pdg_{9863}}}}{2}\)
  1. 2897612567; locally 8323044:
    \(v = \alpha c \sqrt{ \frac{m_e}{A m_p} }\)
    \(pdg_{2077} = pdg_{1370} pdg_{4567} \sqrt{\frac{pdg_{2515}}{pdg_{3285} pdg_{5916}}}\)
LHS diff is 0 RHS diff is pdg1370*pdg4567*sqrt(pdg2515/(pdg3285*pdg5916))*(-2 + sqrt(2))/2 5646314683:
5789289057:
2897612567:
5646314683:
5789289057:
2897612567:
upper limit on velocity in condensed matter declare final expr
  1. 7701249282; locally 9568206:
    \(v_u = \alpha c \sqrt{ \frac{m_e}{m_p} }\)
    \(pdg_{4635} = pdg_{1370} pdg_{4567} \sqrt{\frac{pdg_{2515}}{pdg_{5916}}}\)
no validation is available for declarations 7701249282:
7701249282:
upper limit on velocity in condensed matter substitute LHS of expr 1 into expr 2
  1. 4107032818; locally 6901924:
    \(E_{\rm Rydberg} = E\)
    \(pdg_{9838} = pdg_{2241}\)
  2. 1556389363; locally 5961293:
    \(E_{\rm Rydberg} = \frac{ m_e e^4 }{ 32 \pi^2 \epsilon_0^2 \hbar^2}\)
    \(pdg_{9838} = \frac{pdg_{1999}^{4} pdg_{2515}}{32 pdg_{1054}^{2} pdg_{3141}^{2} pdg_{7940}^{2}}\)
  1. 3291685884; locally 3642765:
    \(E = \frac{ m_e e^4 }{ 32 \pi^2 \epsilon_0^2 \hbar^2}\)
    \(pdg_{2241} = \frac{pdg_{1999}^{4} pdg_{2515}}{32 pdg_{1054}^{2} pdg_{3141}^{2} pdg_{7940}^{2}}\)
valid 4107032818:
1556389363:
3291685884:
4107032818:
1556389363:
3291685884:
upper limit on velocity in condensed matter declare assumption
  1. 4107032818; locally 6901924:
    \(E_{\rm Rydberg} = E\)
    \(pdg_{9838} = pdg_{2241}\)
no validation is available for declarations 4107032818:
4107032818:
upper limit on velocity in condensed matter simplify
  1. 3935058307; locally 2063484:
    \(v = \sqrt{ \frac{m_e}{m} \frac{e^4}{32 \pi^2 \epsilon_0^2 \hbar^2} }\)
    \(pdg_{2077} = \frac{\sqrt{2} \sqrt{\frac{pdg_{1999}^{4} pdg_{2515}}{pdg_{1054}^{2} pdg_{3141}^{2} pdg_{7940}^{2} pdg_{9863}}}}{8}\)
  1. 9640720571; locally 4586348:
    \(v = \frac{e^2}{4 \pi \epsilon_0 \hbar} \sqrt{\frac{m_e}{2 m}}\)
    \(pdg_{2077} = \frac{\sqrt{2} pdg_{1999}^{2} \sqrt{\frac{pdg_{2515}}{pdg_{9863}}}}{8 pdg_{1054} pdg_{3141} pdg_{7940}}\)
LHS diff is 0 RHS diff is sqrt(2)*(pdg1054*pdg3141*pdg7940*sqrt(pdg1999**4*pdg2515/(pdg1054**2*pdg3141**2*pdg7940**2*pdg9863)) - pdg1999**2*sqrt(pdg2515/pdg9863))/(8*pdg1054*pdg3141*pdg7940) 3935058307:
9640720571:
3935058307:
9640720571:
upper limit on velocity in condensed matter multiply both sides by
  1. 8908736791; locally 2438445:
    \(\rho = \frac{m}{a^3}\)
    \(pdg_{3935} = \frac{pdg_{9863}}{pdg_{5854}^{3}}\)
  1. 2397692197:
    \(a^3\)
    \(pdg_{5854}^{3}\)
  1. 8688588981; locally 7834577:
    \(a^3 \rho = m\)
    \(pdg_{3935} pdg_{5854}^{3} = pdg_{9863}\)
valid 8908736791:
8688588981:
8908736791:
8688588981:
upper limit on velocity in condensed matter declare initial expr
  1. 9376481176; locally 2178289:
    \(K = f \frac{E}{a^3}\)
    \(K = \frac{pdg_{2241} pdg_{6235}}{pdg_{5854}^{3}}\)
no validation is available for declarations 9376481176:
9376481176:
upper limit on velocity in condensed matter declare initial expr
  1. 8908736791; locally 2438445:
    \(\rho = \frac{m}{a^3}\)
    \(pdg_{3935} = \frac{pdg_{9863}}{pdg_{5854}^{3}}\)
no validation is available for declarations 8908736791:
8908736791:
upper limit on velocity in condensed matter substitute LHS of expr 1 into expr 2
  1. 9376481176; locally 2178289:
    \(K = f \frac{E}{a^3}\)
    \(K = \frac{pdg_{2241} pdg_{6235}}{pdg_{5854}^{3}}\)
  2. 6504442697; locally 9155336:
    \(v = \sqrt{ \frac{K}{\rho} }\)
    \(pdg_{2077} = \sqrt{\frac{K}{pdg_{3935}}}\)
  1. 8090924099; locally 5077893:
    \(v = \sqrt{ \left( f\frac{E}{a^3} \right) \frac{1}{\rho} }\)
    \(pdg_{2077} = \sqrt{\frac{pdg_{2241} pdg_{6235}}{pdg_{3935} pdg_{5854}^{3}}}\)
valid 9376481176:
6504442697:
8090924099:
9376481176:
6504442697:
8090924099:
upper limit on velocity in condensed matter declare initial expr
  1. 4560648264; locally 1719451:
    \(v = \sqrt{ \frac{K + (4/3) G}{\rho} }\)
    \(pdg_{2077} = \sqrt{\frac{pdg_{1466} + \frac{4 pdg_{3033}}{3}}{pdg_{3935}}}\)
no validation is available for declarations 4560648264:
4560648264:
upper limit on velocity in condensed matter substitute LHS of expr 1 into expr 2
  1. 3291685884; locally 3642765:
    \(E = \frac{ m_e e^4 }{ 32 \pi^2 \epsilon_0^2 \hbar^2}\)
    \(pdg_{2241} = \frac{pdg_{1999}^{4} pdg_{2515}}{32 pdg_{1054}^{2} pdg_{3141}^{2} pdg_{7940}^{2}}\)
  2. 9854442418; locally 4534919:
    \(v = \sqrt{\frac{E}{m}}\)
    \(pdg_{2077} = \sqrt{\frac{pdg_{2241}}{pdg_{9863}}}\)
  1. 3935058307; locally 2063484:
    \(v = \sqrt{ \frac{m_e}{m} \frac{e^4}{32 \pi^2 \epsilon_0^2 \hbar^2} }\)
    \(pdg_{2077} = \frac{\sqrt{2} \sqrt{\frac{pdg_{1999}^{4} pdg_{2515}}{pdg_{1054}^{2} pdg_{3141}^{2} pdg_{7940}^{2} pdg_{9863}}}}{8}\)
valid 3291685884:
9854442418:
3935058307:
3291685884:
9854442418:
3935058307:
upper limit on velocity in condensed matter declare initial expr
  1. 5646314683; locally 6979804:
    \(m = A m_p\)
    \(pdg_{9863} = pdg_{3285} pdg_{5916}\)
no validation is available for declarations 5646314683:
5646314683:
upper limit on velocity in condensed matter drop non-dominant term
  1. 7837519722; locally 5020923:
    \(v = \sqrt{f} \sqrt{\frac{E}{m}}\)
    \(pdg_{2077} = \sqrt{pdg_{6235}} \sqrt{\frac{pdg_{2241}}{pdg_{9863}}}\)
  1. 3685779219:
    \(\sqrt{f} \approx 2\)
    \(2 approx \sqrt{pdg_{6235}}\)
  1. 9854442418; locally 4534919:
    \(v = \sqrt{\frac{E}{m}}\)
    \(pdg_{2077} = \sqrt{\frac{pdg_{2241}}{pdg_{9863}}}\)
no check performed 7837519722:
9854442418:
7837519722:
9854442418:
upper limit on velocity in condensed matter drop non-dominant term
  1. 4560648264; locally 1719451:
    \(v = \sqrt{ \frac{K + (4/3) G}{\rho} }\)
    \(pdg_{2077} = \sqrt{\frac{pdg_{1466} + \frac{4 pdg_{3033}}{3}}{pdg_{3935}}}\)
  1. 9674924517:
    \(K >> G\)
    \(pdg_{1466} > pdg_{3033}\)
  1. 6504442697; locally 9155336:
    \(v = \sqrt{ \frac{K}{\rho} }\)
    \(pdg_{2077} = \sqrt{\frac{K}{pdg_{3935}}}\)
no check performed 4560648264:
6504442697:
4560648264:
6504442697:
upper limit on velocity in condensed matter substitute LHS of expr 1 into expr 2
  1. 5838268428; locally 6181437:
    \(\alpha c = \frac{1}{4 \pi \epsilon_0} \frac{e^2}{\hbar}\)
    \(pdg_{1370} pdg_{4567} = \frac{pdg_{1999}^{2}}{4 pdg_{1054} pdg_{3141} pdg_{7940}}\)
  2. 9640720571; locally 4586348:
    \(v = \frac{e^2}{4 \pi \epsilon_0 \hbar} \sqrt{\frac{m_e}{2 m}}\)
    \(pdg_{2077} = \frac{\sqrt{2} pdg_{1999}^{2} \sqrt{\frac{pdg_{2515}}{pdg_{9863}}}}{8 pdg_{1054} pdg_{3141} pdg_{7940}}\)
  1. 5789289057; locally 5883117:
    \(v = \alpha c \sqrt{ \frac{m_e}{2 m} }\)
    \(pdg_{2077} = \frac{\sqrt{2} pdg_{1370} pdg_{4567} \sqrt{\frac{pdg_{2515}}{pdg_{9863}}}}{2}\)
LHS diff is 0 RHS diff is sqrt(2)*sqrt(pdg2515/pdg9863)*(-4*pdg1054*pdg1370*pdg3141*pdg4567*pdg7940 + pdg1999**2)/(8*pdg1054*pdg3141*pdg7940) 5838268428:
9640720571:
5789289057:
5838268428:
9640720571:
5789289057:
equation of motion for a spring declare initial expr
  1. 6831694380; locally 9761157:
    \(a = \frac{d^2 x}{dt^2}\)
    \(a = \frac{d^{2} x}{dt^{2}}\)
no validation is available for declarations 6831694380:
6831694380:
equation of motion for a spring declare guess solution
  1. 8991236357; locally 4154219:
    \(\frac{d^2 x}{dt^2} = -\frac{k}{m} x\)
    \(\frac{d^{2} pdg_{4037}}{dt^{2}} = - \frac{pdg_{1356} pdg_{4037}}{pdg_{5156}}\)
  1. 5415824175; locally 2877569:
    \(x(t) = A \cos(\omega t)\)
    \(x{\left(pdg_{1467} \right)} = pdg_{9885} \cos{\left(pdg_{1467} pdg_{2321} \right)}\)
no validation is available for declarations 8991236357:
5415824175:
8991236357:
5415824175:
what, when differentiated twice, yields a negative of itself? cosine
equation of motion for a spring LHS of expr 1 equals LHS of expr 2
  1. 5945893986; locally 4836115:
    \(\frac{d^2 x}{dt^2} = -A \omega^2 \cos(\omega t)\)
    \(\frac{d^{2} x}{dt^{2}} = - pdg_{2321}^{2} pdg_{9885} \cos{\left(pdg_{1467} pdg_{2321} \right)}\)
  2. 8991236357; locally 4154219:
    \(\frac{d^2 x}{dt^2} = -\frac{k}{m} x\)
    \(\frac{d^{2} pdg_{4037}}{dt^{2}} = - \frac{pdg_{1356} pdg_{4037}}{pdg_{5156}}\)
  1. 1772973171; locally 7792692:
    \(-\frac{k}{m} x = -A \omega^2 \cos(\omega t)\)
    \(- \frac{k x}{pdg_{5156}} = - A pdg_{2321}^{2} \cos{\left(pdg_{2321} pdg_{9491} \right)}\)
input diff is d**2*(-pdg4037 + x)/dt**2 diff is -k*x/pdg5156 + pdg2321**2*pdg9885*cos(pdg1467*pdg2321) diff is -A*pdg2321**2*cos(pdg2321*pdg9491) + pdg1356*pdg4037/pdg5156 5945893986:
8991236357:
1772973171:
5945893986:
8991236357:
1772973171:
equation of motion for a spring substitute LHS of expr 1 into expr 2
  1. 5415824175; locally 2877569:
    \(x(t) = A \cos(\omega t)\)
    \(x{\left(pdg_{1467} \right)} = pdg_{9885} \cos{\left(pdg_{1467} pdg_{2321} \right)}\)
  2. 1772973171; locally 7792692:
    \(-\frac{k}{m} x = -A \omega^2 \cos(\omega t)\)
    \(- \frac{k x}{pdg_{5156}} = - A pdg_{2321}^{2} \cos{\left(pdg_{2321} pdg_{9491} \right)}\)
  1. 2148049269; locally 7745098:
    \(-\frac{k}{m} A \cos(\omega t) = -A \omega^2 \cos(\omega t)\)
    \(- \frac{A k \cos{\left(pdg_{2321} pdg_{9491} \right)}}{pdg_{5156}} = - A pdg_{2321}^{2} \cos{\left(pdg_{2321} pdg_{9491} \right)}\)
LHS diff is k*(A*cos(pdg2321*pdg9491) - x)/pdg5156 RHS diff is 0 5415824175:
1772973171:
2148049269:
5415824175:
1772973171:
2148049269:
equation of motion for a spring square root both sides
  1. 1931103031; locally 8360924:
    \(\frac{k}{m} = \omega^2\)
    \(\frac{pdg_{1356}}{pdg_{5156}} = pdg_{2321}^{2}\)
  1. 1784114349; locally 7243628:
    \(\sqrt{\frac{k}{m}} = \omega\)
    \(\sqrt{\frac{pdg_{1356}}{pdg_{5156}}} = pdg_{2321}\)
  2. 1888494137; locally 2051755:
    \(-\sqrt{\frac{k}{m}} = \omega\)
    \(- \sqrt{\frac{pdg_{1356}}{pdg_{5156}}} = pdg_{2321}\)
no check performed 1931103031:
1784114349:
1888494137:
1931103031:
1784114349:
1888494137:
equation of motion for a spring declare initial expr
  1. 5345738321; locally 3065061:
    \(F = m a\)
    \(pdg_{4202} = pdg_{5156} pdg_{9140}\)
no validation is available for declarations 5345738321:
5345738321:
equation of motion for a spring declare initial expr
  1. 4428528271; locally 2664105:
    \(F_{\rm{spring}} = -k x\)
    \(pdg_{4183} = - pdg_{1356} pdg_{4037}\)
no validation is available for declarations 4428528271:
4428528271:
equation of motion for a spring LHS of expr 1 equals LHS of expr 2
  1. 8655294002; locally 5403312:
    \(a = -\frac{k}{m}x\)
    \(pdg_{9140} = - \frac{pdg_{1356} pdg_{4037}}{pdg_{5156}}\)
  2. 6831694380; locally 9761157:
    \(a = \frac{d^2 x}{dt^2}\)
    \(a = \frac{d^{2} x}{dt^{2}}\)
  1. 8991236357; locally 4154219:
    \(\frac{d^2 x}{dt^2} = -\frac{k}{m} x\)
    \(\frac{d^{2} pdg_{4037}}{dt^{2}} = - \frac{pdg_{1356} pdg_{4037}}{pdg_{5156}}\)
input diff is -a + pdg9140 diff is d**2*pdg4037/dt**2 + pdg1356*pdg4037/pdg5156 diff is -d**2*x/dt**2 - pdg1356*pdg4037/pdg5156 8655294002:
6831694380:
8991236357:
8655294002:
6831694380:
8991236357:
equation of motion for a spring LHS of expr 1 equals LHS of expr 2
  1. 5345738321; locally 3065061:
    \(F = m a\)
    \(pdg_{4202} = pdg_{5156} pdg_{9140}\)
  2. 4428528271; locally 2664105:
    \(F_{\rm{spring}} = -k x\)
    \(pdg_{4183} = - pdg_{1356} pdg_{4037}\)
  1. 2334518266; locally 7273319:
    \(m a = -k x\)
    \(pdg_{5156} pdg_{9140} = - pdg_{1356} pdg_{4037}\)
input diff is -pdg4183 + pdg4202 diff is 0 diff is 0 5345738321:
4428528271:
2334518266:
5345738321:
4428528271:
2334518266:
equation of motion for a spring multiply both sides by
  1. 2148049269; locally 7745098:
    \(-\frac{k}{m} A \cos(\omega t) = -A \omega^2 \cos(\omega t)\)
    \(- \frac{A k \cos{\left(pdg_{2321} pdg_{9491} \right)}}{pdg_{5156}} = - A pdg_{2321}^{2} \cos{\left(pdg_{2321} pdg_{9491} \right)}\)
  1. 7473576008:
    \(\frac{-1}{A \cos(\omega t)}\)
    \(pdg_{1467}\)
  1. 1931103031; locally 8360924:
    \(\frac{k}{m} = \omega^2\)
    \(\frac{pdg_{1356}}{pdg_{5156}} = pdg_{2321}^{2}\)
LHS diff is -(A*k*pdg1467*cos(pdg2321*pdg9491) + pdg1356)/pdg5156 RHS diff is -pdg2321**2*(A*pdg1467*cos(pdg2321*pdg9491) + 1) 2148049269:
1931103031:
2148049269:
1931103031:
equation of motion for a spring differentiate with respect to
  1. 7652131521; locally 4463004:
    \(\frac{dx}{dt} = -A \omega \sin (\omega t)\)
    \(\frac{d}{d pdg_{1467}} pdg_{4037} = - pdg_{2321} pdg_{9885} \sin{\left(pdg_{1467} pdg_{2321} \right)}\)
  1. 1451839362:
    \(t\)
    \(pdg_{1467}\)
  1. 5945893986; locally 4836115:
    \(\frac{d^2 x}{dt^2} = -A \omega^2 \cos(\omega t)\)
    \(\frac{d^{2} x}{dt^{2}} = - pdg_{2321}^{2} pdg_{9885} \cos{\left(pdg_{1467} pdg_{2321} \right)}\)
no check performed 7652131521:
5945893986:
7652131521:
5945893986:
equation of motion for a spring divide both sides by
  1. 2334518266; locally 7273319:
    \(m a = -k x\)
    \(pdg_{5156} pdg_{9140} = - pdg_{1356} pdg_{4037}\)
  1. 3634715785:
    \(m\)
    \(pdg_{5156}\)
  1. 8655294002; locally 5403312:
    \(a = -\frac{k}{m}x\)
    \(pdg_{9140} = - \frac{pdg_{1356} pdg_{4037}}{pdg_{5156}}\)
valid 2334518266:
8655294002:
2334518266:
8655294002:
equation of motion for a spring differentiate with respect to
  1. 5415824175; locally 2877569:
    \(x(t) = A \cos(\omega t)\)
    \(x{\left(pdg_{1467} \right)} = pdg_{9885} \cos{\left(pdg_{1467} pdg_{2321} \right)}\)
  1. 5846177002:
    \(t\)
    \(t\)
  1. 7652131521; locally 4463004:
    \(\frac{dx}{dt} = -A \omega \sin (\omega t)\)
    \(\frac{d}{d pdg_{1467}} pdg_{4037} = - pdg_{2321} pdg_{9885} \sin{\left(pdg_{1467} pdg_{2321} \right)}\)
no check performed 5415824175:
7652131521:
5415824175:
7652131521:
equation of motion for a spring substitute RHS of expr 1 into expr 2
  1. 1784114349; locally 7243628:
    \(\sqrt{\frac{k}{m}} = \omega\)
    \(\sqrt{\frac{pdg_{1356}}{pdg_{5156}}} = pdg_{2321}\)
  2. 5415824175; locally 2877569:
    \(x(t) = A \cos(\omega t)\)
    \(x{\left(pdg_{1467} \right)} = pdg_{9885} \cos{\left(pdg_{1467} pdg_{2321} \right)}\)
  1. 6908055431; locally 5872898:
    \(x(t) = A \cos\left(\frac{k}{m} t\right)\)
    \(x{\left(pdg_{1467} \right)} = pdg_{9885} \cos{\left(\frac{k pdg_{1467}}{pdg_{5156}} \right)}\)
LHS diff is 0 RHS diff is pdg9885*(cos(pdg1467*sqrt(pdg1356/pdg5156)) - cos(k*pdg1467/pdg5156)) 1784114349:
5415824175:
6908055431:
1784114349:
5415824175:
6908055431:
equation of motion for a spring declare final expr
  1. 6908055431; locally 5872898:
    \(x(t) = A \cos\left(\frac{k}{m} t\right)\)
    \(x{\left(pdg_{1467} \right)} = pdg_{9885} \cos{\left(\frac{k pdg_{1467}}{pdg_{5156}} \right)}\)
no validation is available for declarations 6908055431:
6908055431:
total electrical resistance for circuit with two resistors in parallel change two variables in expr
  1. 4087145886; locally 8922008:
    \(V = I R\)
    \(pdg_{6599} = pdg_{4501} pdg_{6458}\)
  1. 2867848403:
    \(I\)
    \(pdg_{4501}\)
  2. 1323602089:
    \(I_1\)
    \(pdg_{3978}\)
  3. 7191277455:
    \(R\)
    \(pdg_{6458}\)
  4. 5258419993:
    \(R_1\)
    \(pdg_{8697}\)
  1. 4128500715; locally 8148802:
    \(V = I_1 R_1\)
    \(pdg_{6599} = pdg_{3978} pdg_{8697}\)
valid 4087145886:
4128500715:
4087145886:
4128500715:
total electrical resistance for circuit with two resistors in parallel declare final expr
  1. 1457415749; locally 8713399:
    \(\frac{1}{R_{\rm total}} = \frac{1}{R_1} + \frac{1}{R_2}\)
    \(\frac{1}{pdg_{1908}} = \frac{1}{pdg_{8697}} + \frac{1}{pdg_{3461}}\)
no validation is available for declarations 1457415749:
1457415749:
total electrical resistance for circuit with two resistors in parallel declare initial expr
  1. 6753224061; locally 3843569:
    \(I_{\rm total} = I_1 + I_2\)
    \(pdg_{9647} = pdg_{3978} + pdg_{4856}\)
no validation is available for declarations 6753224061:
6753224061:
current flows through both resistors
total electrical resistance for circuit with two resistors in parallel divide both sides by
  1. 2271186630; locally 8002723:
    \(V = I_{\rm total} R_{\rm total}\)
    \(pdg_{6599} = pdg_{1908} pdg_{9647}\)
  1. 6546594355:
    \(R_{\rm total}\)
    \(pdg_{1908}\)
  1. 2809345867; locally 1708642:
    \(\frac{V}{R_{\rm total}} = I_{\rm total}\)
    \(\frac{pdg_{6599}}{pdg_{1908}} = pdg_{9647}\)
valid 2271186630:
2809345867:
2271186630:
2809345867:
total electrical resistance for circuit with two resistors in parallel divide both sides by
  1. 4866160902; locally 6759349:
    \(\frac{V}{R_{\rm total}} = \frac{V}{R_1} + \frac{V}{R_2}\)
    \(\frac{pdg_{6599}}{pdg_{1908}} = \frac{pdg_{6599}}{pdg_{8697}} + \frac{pdg_{6599}}{pdg_{3461}}\)
  1. 3433441359:
    \(V\)
    \(pdg_{6599}\)
  1. 1457415749; locally 8713399:
    \(\frac{1}{R_{\rm total}} = \frac{1}{R_1} + \frac{1}{R_2}\)
    \(\frac{1}{pdg_{1908}} = \frac{1}{pdg_{8697}} + \frac{1}{pdg_{3461}}\)
valid 4866160902:
1457415749:
4866160902:
1457415749:
total electrical resistance for circuit with two resistors in parallel substitute LHS of three expressions into expr
  1. 2809345867; locally 1708642:
    \(\frac{V}{R_{\rm total}} = I_{\rm total}\)
    \(\frac{pdg_{6599}}{pdg_{1908}} = pdg_{9647}\)
  2. 2051901211; locally 5168370:
    \(\frac{V}{R_1} = I_1\)
    \(\frac{pdg_{6599}}{pdg_{8697}} = pdg_{3978}\)
  3. 7002609475; locally 4037937:
    \(\frac{V}{R_2} = I_2\)
    \(\frac{pdg_{6599}}{pdg_{3461}} = pdg_{4856}\)
  4. 6753224061; locally 3843569:
    \(I_{\rm total} = I_1 + I_2\)
    \(pdg_{9647} = pdg_{3978} + pdg_{4856}\)
  1. 4866160902; locally 6759349:
    \(\frac{V}{R_{\rm total}} = \frac{V}{R_1} + \frac{V}{R_2}\)
    \(\frac{pdg_{6599}}{pdg_{1908}} = \frac{pdg_{6599}}{pdg_{8697}} + \frac{pdg_{6599}}{pdg_{3461}}\)
no check performed 2809345867:
2051901211:
7002609475:
6753224061:
4866160902:
2809345867:
2051901211:
7002609475:
6753224061:
4866160902:
total electrical resistance for circuit with two resistors in parallel divide both sides by
  1. 4128500715; locally 8148802:
    \(V = I_1 R_1\)
    \(pdg_{6599} = pdg_{3978} pdg_{8697}\)
  1. 5181421075:
    \(R_1\)
    \(pdg_{8697}\)
  1. 2051901211; locally 5168370:
    \(\frac{V}{R_1} = I_1\)
    \(\frac{pdg_{6599}}{pdg_{8697}} = pdg_{3978}\)
valid 4128500715:
2051901211:
4128500715:
2051901211:
total electrical resistance for circuit with two resistors in parallel change two variables in expr
  1. 4087145886; locally 8922008:
    \(V = I R\)
    \(pdg_{6599} = pdg_{4501} pdg_{6458}\)
  1. 9053099840:
    \(I\)
    \(pdg_{4501}\)
  2. 7798615279:
    \(I_{\rm total}\)
    \(pdg_{9647}\)
  3. 1100332145:
    \(R\)
    \(pdg_{6458}\)
  4. 7410124465:
    \(R_{\rm total}\)
    \(pdg_{1908}\)
  1. 2271186630; locally 8002723:
    \(V = I_{\rm total} R_{\rm total}\)
    \(pdg_{6599} = pdg_{1908} pdg_{9647}\)
valid 4087145886:
2271186630:
4087145886:
2271186630:
total electrical resistance for circuit with two resistors in parallel change two variables in expr
  1. 4087145886; locally 8922008:
    \(V = I R\)
    \(pdg_{6599} = pdg_{4501} pdg_{6458}\)
  1. 5585739998:
    \(I\)
    \(pdg_{4501}\)
  2. 5463275819:
    \(I_2\)
    \(pdg_{4856}\)
  3. 1377431959:
    \(R\)
    \(pdg_{6458}\)
  4. 9746066299:
    \(R_2\)
    \(pdg_{3461}\)
  1. 9243879541; locally 6313158:
    \(V = I_2 R_2\)
    \(pdg_{6599} = pdg_{3461} pdg_{4856}\)
valid 4087145886:
9243879541:
4087145886:
9243879541:
total electrical resistance for circuit with two resistors in parallel divide both sides by
  1. 9243879541; locally 6313158:
    \(V = I_2 R_2\)
    \(pdg_{6599} = pdg_{3461} pdg_{4856}\)
  1. 3031116098:
    \(R_2\)
    \(pdg_{3461}\)
  1. 7002609475; locally 4037937:
    \(\frac{V}{R_2} = I_2\)
    \(\frac{pdg_{6599}}{pdg_{3461}} = pdg_{4856}\)
valid 9243879541:
7002609475:
9243879541:
7002609475:
hyperbolic trigonometric identities declare initial expr
  1. 2103023049; locally 3077940:
    \(\sin(x) = \frac{1}{2i}\left(\exp(i x)-\exp(-i x) \right)\)
    \(\sin{\left(pdg_{1464} \right)} = \frac{e^{pdg_{1464} pdg_{4621}} - e^{- pdg_{1464} pdg_{4621}}}{2 pdg_{4621}}\)
no validation is available for declarations 2103023049:
2103023049:
hyperbolic trigonometric identities simplify
  1. 1128605625; locally 6426652:
    \({\rm sech}^2\ x + \tanh^2(x) = \frac{4}{\left(\exp(x)+\exp(-x)\right)^2} + \frac{\left(\exp(x)-\exp(-x)\right)^2}{\left(\exp(x)+\exp(-x)\right)^2}\)
    \(\tanh^{2}{\left(pdg_{1464} \right)} + \operatorname{sech}^{2}{\left(pdg_{1464} \right)} = \frac{\left(e^{pdg_{1464}} - e^{- pdg_{1464}}\right)^{2}}{\left(e^{pdg_{1464}} + e^{- pdg_{1464}}\right)^{2}} + \frac{4}{\left(e^{pdg_{1464}} + e^{- pdg_{1464}}\right)^{2}}\)
  1. 4830221561; locally 6070484:
    \({\rm sech}^2\ x + \tanh^2(x) = \frac{4+\left(\exp(2x)-1-1+\exp(-2x)\right)}{\left(\exp(x)+\exp(-x)\right)^2}\)
    \(\tanh^{2}{\left(pdg_{1464} \right)} + \operatorname{sech}^{2}{\left(pdg_{1464} \right)} = \frac{e^{2 pdg_{1464}} + 2 + e^{- 2 pdg_{1464}}}{\left(e^{pdg_{1464}} + e^{- pdg_{1464}}\right)^{2}}\)
valid 1128605625:
4830221561:
1128605625:
4830221561:
hyperbolic trigonometric identities add expr 1 to expr 2
  1. 3868998312; locally 5395954:
    \({\rm sech}^2\ x = \frac{4}{\left(\exp(x)+\exp(-x)\right)^2}\)
    \(\operatorname{sech}^{2}{\left(pdg_{1464} \right)} = \frac{4}{\left(e^{pdg_{1464}} + e^{- pdg_{1464}}\right)^{2}}\)
  2. 2121790783; locally 9317216:
    \(\tanh^2(x) = \frac{ \left(\exp(x)-\exp(-x)\right)^2}{\left(\exp(x)+\exp(-x)\right)^2}\)
    \(\tanh^{2}{\left(pdg_{1464} \right)} = \frac{\left(e^{pdg_{1464}} - e^{- pdg_{1464}}\right)^{2}}{\left(e^{pdg_{1464}} + e^{- pdg_{1464}}\right)^{2}}\)
  1. 1128605625; locally 6426652:
    \({\rm sech}^2\ x + \tanh^2(x) = \frac{4}{\left(\exp(x)+\exp(-x)\right)^2} + \frac{\left(\exp(x)-\exp(-x)\right)^2}{\left(\exp(x)+\exp(-x)\right)^2}\)
    \(\tanh^{2}{\left(pdg_{1464} \right)} + \operatorname{sech}^{2}{\left(pdg_{1464} \right)} = \frac{\left(e^{pdg_{1464}} - e^{- pdg_{1464}}\right)^{2}}{\left(e^{pdg_{1464}} + e^{- pdg_{1464}}\right)^{2}} + \frac{4}{\left(e^{pdg_{1464}} + e^{- pdg_{1464}}\right)^{2}}\)
valid 3868998312:
2121790783:
1128605625:
3868998312:
2121790783:
1128605625:
hyperbolic trigonometric identities declare initial expr
  1. 4585932229; locally 4731536:
    \(\cos(x) = \frac{1}{2}\left(\exp(i x)+\exp(-i x) \right)\)
    \(\cos{\left(pdg_{1464} \right)} = \frac{e^{pdg_{1464} pdg_{4621}}}{2} + \frac{e^{- pdg_{1464} pdg_{4621}}}{2}\)
no validation is available for declarations 4585932229:
4585932229:
hyperbolic trigonometric identities substitute LHS of expr 1 into expr 2
  1. 6404535647; locally 4319733:
    \(\cosh x = \frac{\exp(x) + \exp(-x)}{2}\)
    \(\cosh{\left(pdg_{1464} \right)} = \frac{e^{pdg_{1464}}}{2} + \frac{e^{- pdg_{1464}}}{2}\)
  2. 7731226616; locally 3909583:
    \({\rm sech}\ x = \frac{1}{\cosh x}\)
    \(\operatorname{sech}{\left(pdg_{1464} \right)} = \frac{1}{\cosh{\left(pdg_{1464} \right)}}\)
  1. 4166155526; locally 7222556:
    \({\rm sech}\ x = \frac{2}{\exp(x)+\exp(-x)}\)
    \(\operatorname{sech}{\left(pdg_{1464} \right)} = \frac{2}{e^{pdg_{1464}} + e^{- pdg_{1464}}}\)
valid 6404535647:
7731226616:
4166155526:
6404535647:
7731226616:
4166155526:
hyperbolic trigonometric identities substitute LHS of expr 1 into expr 2
  1. 1038566242; locally 3145608:
    \(\sinh x = \frac{\exp(x) - \exp(-x)}{2}\)
    \(\sinh{\left(pdg_{1464} \right)} = \frac{e^{pdg_{1464}}}{2} - \frac{e^{- pdg_{1464}}}{2}\)
  2. 4872163189; locally 3867418:
    \(\tanh(x) = \frac{\sinh(x)}{\cosh(x)}\)
    \(\tanh{\left(pdg_{1464} \right)} = \frac{\sinh{\left(pdg_{1464} \right)}}{\cosh{\left(pdg_{1464} \right)}}\)
  1. 2902772962; locally 6831354:
    \(\tanh(x) = \frac{\frac{1}{2}\left( \exp(x)-\exp(-x) \right)}{\cosh(x)}\)
    \(\tanh{\left(pdg_{1464} \right)} = \frac{\frac{e^{pdg_{1464}}}{2} - \frac{e^{- pdg_{1464}}}{2}}{\cosh{\left(pdg_{1464} \right)}}\)
valid 1038566242:
4872163189:
2902772962:
1038566242:
4872163189:
2902772962:
hyperbolic trigonometric identities simplify
  1. 4830221561; locally 6070484:
    \({\rm sech}^2\ x + \tanh^2(x) = \frac{4+\left(\exp(2x)-1-1+\exp(-2x)\right)}{\left(\exp(x)+\exp(-x)\right)^2}\)
    \(\tanh^{2}{\left(pdg_{1464} \right)} + \operatorname{sech}^{2}{\left(pdg_{1464} \right)} = \frac{e^{2 pdg_{1464}} + 2 + e^{- 2 pdg_{1464}}}{\left(e^{pdg_{1464}} + e^{- pdg_{1464}}\right)^{2}}\)
  1. 5866629429; locally 8702257:
    \({\rm sech}^2\ x + \tanh^2(x) = 1\)
    \(\tanh^{2}{\left(pdg_{1464} \right)} + \operatorname{sech}^{2}{\left(pdg_{1464} \right)} = 1\)
valid 4830221561:
5866629429:
4830221561:
5866629429:
hyperbolic trigonometric identities declare initial expr
  1. 1038566242; locally 3145608:
    \(\sinh x = \frac{\exp(x) - \exp(-x)}{2}\)
    \(\sinh{\left(pdg_{1464} \right)} = \frac{e^{pdg_{1464}}}{2} - \frac{e^{- pdg_{1464}}}{2}\)
no validation is available for declarations 1038566242:
1038566242:
hyperbolic trigonometric identities change variable X to Y
  1. 2103023049; locally 3077940:
    \(\sin(x) = \frac{1}{2i}\left(\exp(i x)-\exp(-i x) \right)\)
    \(\sin{\left(pdg_{1464} \right)} = \frac{e^{pdg_{1464} pdg_{4621}} - e^{- pdg_{1464} pdg_{4621}}}{2 pdg_{4621}}\)
  1. 6976493023:
    \(x\)
    \(pdg_{1464}\)
  2. 7159989263:
    \(i x\)
    \(pdg_{1464} pdg_{4621}\)
  1. 4878728014; locally 5823930:
    \(\sin(i x) = \frac{1}{2i}\left(\exp(-x) - \exp(x) \right)\)
    \(\sin{\left(pdg_{1464} pdg_{4621} \right)} = \frac{- e^{pdg_{1464}} + e^{- pdg_{1464}}}{2 pdg_{4621}}\)
LHS diff is 0 RHS diff is exp(pdg1464)/(2*pdg4621) + exp(pdg1464*pdg4621**2)/(2*pdg4621) - exp(-pdg1464*pdg4621**2)/(2*pdg4621) - exp(-pdg1464)/(2*pdg4621) 2103023049:
4878728014:
2103023049:
4878728014:
hyperbolic trigonometric identities multiply expr 1 by expr 2
  1. 4166155526; locally 7222556:
    \({\rm sech}\ x = \frac{2}{\exp(x)+\exp(-x)}\)
    \(\operatorname{sech}{\left(pdg_{1464} \right)} = \frac{2}{e^{pdg_{1464}} + e^{- pdg_{1464}}}\)
  2. 4166155526; locally 7222556:
    \({\rm sech}\ x = \frac{2}{\exp(x)+\exp(-x)}\)
    \(\operatorname{sech}{\left(pdg_{1464} \right)} = \frac{2}{e^{pdg_{1464}} + e^{- pdg_{1464}}}\)
  1. 3868998312; locally 5395954:
    \({\rm sech}^2\ x = \frac{4}{\left(\exp(x)+\exp(-x)\right)^2}\)
    \(\operatorname{sech}^{2}{\left(pdg_{1464} \right)} = \frac{4}{\left(e^{pdg_{1464}} + e^{- pdg_{1464}}\right)^{2}}\)
valid 4166155526:
4166155526:
3868998312:
4166155526:
4166155526:
3868998312:
hyperbolic trigonometric identities declare final expr
  1. 5866629429; locally 8702257:
    \({\rm sech}^2\ x + \tanh^2(x) = 1\)
    \(\tanh^{2}{\left(pdg_{1464} \right)} + \operatorname{sech}^{2}{\left(pdg_{1464} \right)} = 1\)
no validation is available for declarations 5866629429:
5866629429:
hyperbolic trigonometric identities multiply both sides by
  1. 5323719091; locally 2016533:
    \(i \sinh x = \frac{1}{2i} \left( \exp(-x) - \exp(x) \right)\)
    \(pdg_{4621} \sinh{\left(pdg_{1464} \right)} = \frac{- e^{pdg_{1464}} + e^{- pdg_{1464}}}{2 pdg_{4621}}\)
  1. 9885190237:
    \(i\)
    \(pdg_{4621}\)
  1. 1038566242; locally 3145608:
    \(\sinh x = \frac{\exp(x) - \exp(-x)}{2}\)
    \(\sinh{\left(pdg_{1464} \right)} = \frac{e^{pdg_{1464}}}{2} - \frac{e^{- pdg_{1464}}}{2}\)
LHS diff is (pdg4621**2 - 1)*sinh(pdg1464) RHS diff is -2*sinh(pdg1464) 5323719091:
1038566242:
5323719091:
1038566242:
hyperbolic trigonometric identities simplify
  1. 2762326680; locally 4009221:
    \(\cosh^2 x - \sinh^2 x = \frac{1}{4}\left( \exp(2x)+1+1+\exp(-2x) - \left(\exp(2x)-1-1+\exp(-2x)\right) \right)\)
    \(- \sinh^{2}{\left(pdg_{1464} \right)} + \cosh^{2}{\left(pdg_{1464} \right)} = 1\)
  1. 9413609246; locally 6300507:
    \(\cosh^2 x - \sinh^2 x = 1\)
    \(- \sinh^{2}{\left(pdg_{1464} \right)} + \cosh^{2}{\left(pdg_{1464} \right)} = 1\)
valid 2762326680:
9413609246:
2762326680:
9413609246:
hyperbolic trigonometric identities multiply expr 1 by expr 2
  1. 1038566242; locally 3145608:
    \(\sinh x = \frac{\exp(x) - \exp(-x)}{2}\)
    \(\sinh{\left(pdg_{1464} \right)} = \frac{e^{pdg_{1464}}}{2} - \frac{e^{- pdg_{1464}}}{2}\)
  2. 1038566242; locally 3145608:
    \(\sinh x = \frac{\exp(x) - \exp(-x)}{2}\)
    \(\sinh{\left(pdg_{1464} \right)} = \frac{e^{pdg_{1464}}}{2} - \frac{e^{- pdg_{1464}}}{2}\)
  1. 6031385191; locally 7844176:
    \(\sinh^2 x = \left(\frac{\exp(x) - \exp(-x)}{2}\right)\left(\frac{\exp(x) - \exp(-x)}{2}\right)\)
    \(\sinh^{2}{\left(pdg_{1464} \right)} = \left(\frac{e^{pdg_{1464}}}{2} - \frac{e^{- pdg_{1464}}}{2}\right)^{2}\)
valid 1038566242:
1038566242:
6031385191:
1038566242:
1038566242:
6031385191:
hyperbolic trigonometric identities change variable X to Y
  1. 4585932229; locally 4731536:
    \(\cos(x) = \frac{1}{2}\left(\exp(i x)+\exp(-i x) \right)\)
    \(\cos{\left(pdg_{1464} \right)} = \frac{e^{pdg_{1464} pdg_{4621}}}{2} + \frac{e^{- pdg_{1464} pdg_{4621}}}{2}\)
  1. 7453225570:
    \(x\)
    \(pdg_{1464}\)
  2. 1716984328:
    \(i x\)
    \(pdg_{1464} pdg_{4621}\)
  1. 8651044341; locally 6479977:
    \(\cos(i x) = \frac{1}{2} \left( \exp(-x) + \exp(x) \right)\)
    \(\cos{\left(pdg_{1464} pdg_{4621} \right)} = \frac{e^{pdg_{1464}}}{2} + \frac{e^{- pdg_{1464}}}{2}\)
LHS diff is 0 RHS diff is -cosh(pdg1464) + cosh(pdg1464*pdg4621**2) 4585932229:
8651044341:
4585932229:
8651044341:
hyperbolic trigonometric identities declare final expr
  1. 9413609246; locally 6300507:
    \(\cosh^2 x - \sinh^2 x = 1\)
    \(- \sinh^{2}{\left(pdg_{1464} \right)} + \cosh^{2}{\left(pdg_{1464} \right)} = 1\)
no validation is available for declarations 9413609246:
9413609246:
hyperbolic trigonometric identities declare initial expr
  1. 8418527415; locally 5377003:
    \(\sin(i x) = i \sinh(x)\)
    \(\sin{\left(pdg_{1464} pdg_{4621} \right)} = pdg_{4621} \sinh{\left(pdg_{1464} \right)}\)
no validation is available for declarations 8418527415:
8418527415:
hyperbolic trigonometric identities substitute LHS of expr 1 into expr 2
  1. 6404535647; locally 4319733:
    \(\cosh x = \frac{\exp(x) + \exp(-x)}{2}\)
    \(\cosh{\left(pdg_{1464} \right)} = \frac{e^{pdg_{1464}}}{2} + \frac{e^{- pdg_{1464}}}{2}\)
  2. 2902772962; locally 6831354:
    \(\tanh(x) = \frac{\frac{1}{2}\left( \exp(x)-\exp(-x) \right)}{\cosh(x)}\)
    \(\tanh{\left(pdg_{1464} \right)} = \frac{\frac{e^{pdg_{1464}}}{2} - \frac{e^{- pdg_{1464}}}{2}}{\cosh{\left(pdg_{1464} \right)}}\)
  1. 5349669879; locally 5313211:
    \(\tanh(x) = \frac{ \exp(x)-\exp(-x)}{\exp(x)+\exp(-x)}\)
    \(\tanh{\left(pdg_{1464} \right)} = \frac{e^{pdg_{1464}} - e^{- pdg_{1464}}}{e^{pdg_{1464}} + e^{- pdg_{1464}}}\)
valid 6404535647:
2902772962:
5349669879:
6404535647:
2902772962:
5349669879:
hyperbolic trigonometric identities LHS of expr 1 equals LHS of expr 2
  1. 4878728014; locally 5823930:
    \(\sin(i x) = \frac{1}{2i}\left(\exp(-x) - \exp(x) \right)\)
    \(\sin{\left(pdg_{1464} pdg_{4621} \right)} = \frac{- e^{pdg_{1464}} + e^{- pdg_{1464}}}{2 pdg_{4621}}\)
  2. 8418527415; locally 5377003:
    \(\sin(i x) = i \sinh(x)\)
    \(\sin{\left(pdg_{1464} pdg_{4621} \right)} = pdg_{4621} \sinh{\left(pdg_{1464} \right)}\)
  1. 5323719091; locally 2016533:
    \(i \sinh x = \frac{1}{2i} \left( \exp(-x) - \exp(x) \right)\)
    \(pdg_{4621} \sinh{\left(pdg_{1464} \right)} = \frac{- e^{pdg_{1464}} + e^{- pdg_{1464}}}{2 pdg_{4621}}\)
input diff is 0 diff is pdg4621*sinh(pdg1464) + exp(pdg1464)/(2*pdg4621) - exp(-pdg1464)/(2*pdg4621) diff is -pdg4621*sinh(pdg1464) - exp(pdg1464)/(2*pdg4621) + exp(-pdg1464)/(2*pdg4621) 4878728014:
8418527415:
5323719091:
4878728014:
8418527415:
5323719091:
hyperbolic trigonometric identities declare initial expr
  1. 4872163189; locally 3867418:
    \(\tanh(x) = \frac{\sinh(x)}{\cosh(x)}\)
    \(\tanh{\left(pdg_{1464} \right)} = \frac{\sinh{\left(pdg_{1464} \right)}}{\cosh{\left(pdg_{1464} \right)}}\)
no validation is available for declarations 4872163189:
4872163189:
hyperbolic trigonometric identities LHS of expr 1 equals LHS of expr 2
  1. 8747785338; locally 7404421:
    \(\cos(i x) = \cosh(x)\)
    \(\cos{\left(pdg_{1464} pdg_{4621} \right)} = \cosh{\left(pdg_{1464} \right)}\)
  2. 8651044341; locally 6479977:
    \(\cos(i x) = \frac{1}{2} \left( \exp(-x) + \exp(x) \right)\)
    \(\cos{\left(pdg_{1464} pdg_{4621} \right)} = \frac{e^{pdg_{1464}}}{2} + \frac{e^{- pdg_{1464}}}{2}\)
  1. 6404535647; locally 4319733:
    \(\cosh x = \frac{\exp(x) + \exp(-x)}{2}\)
    \(\cosh{\left(pdg_{1464} \right)} = \frac{e^{pdg_{1464}}}{2} + \frac{e^{- pdg_{1464}}}{2}\)
valid 8747785338:
8651044341:
6404535647:
8747785338:
8651044341:
6404535647:
hyperbolic trigonometric identities declare initial expr
  1. 7731226616; locally 3909583:
    \({\rm sech}\ x = \frac{1}{\cosh x}\)
    \(\operatorname{sech}{\left(pdg_{1464} \right)} = \frac{1}{\cosh{\left(pdg_{1464} \right)}}\)
no validation is available for declarations 7731226616:
7731226616:
hyperbolic trigonometric identities multiply expr 1 by expr 2
  1. 5349669879; locally 5313211:
    \(\tanh(x) = \frac{ \exp(x)-\exp(-x)}{\exp(x)+\exp(-x)}\)
    \(\tanh{\left(pdg_{1464} \right)} = \frac{e^{pdg_{1464}} - e^{- pdg_{1464}}}{e^{pdg_{1464}} + e^{- pdg_{1464}}}\)
  2. 5349669879; locally 5313211:
    \(\tanh(x) = \frac{ \exp(x)-\exp(-x)}{\exp(x)+\exp(-x)}\)
    \(\tanh{\left(pdg_{1464} \right)} = \frac{e^{pdg_{1464}} - e^{- pdg_{1464}}}{e^{pdg_{1464}} + e^{- pdg_{1464}}}\)
  1. 2121790783; locally 9317216:
    \(\tanh^2(x) = \frac{ \left(\exp(x)-\exp(-x)\right)^2}{\left(\exp(x)+\exp(-x)\right)^2}\)
    \(\tanh^{2}{\left(pdg_{1464} \right)} = \frac{\left(e^{pdg_{1464}} - e^{- pdg_{1464}}\right)^{2}}{\left(e^{pdg_{1464}} + e^{- pdg_{1464}}\right)^{2}}\)
valid 5349669879:
5349669879:
2121790783:
5349669879:
5349669879:
2121790783:
hyperbolic trigonometric identities simplify
  1. 8563535636; locally 4001109:
    \(\cosh^2 x - \sinh^2 x = \left(\frac{\exp(x) + \exp(-x)}{2}\right)\left(\frac{\exp(x) + \exp(-x)}{2}\right) - \left(\frac{\exp(x) - \exp(-x)}{2}\right)\left(\frac{\exp(x) - \exp(-x)}{2}\right)\)
    \(- \sinh^{2}{\left(pdg_{1464} \right)} + \cosh^{2}{\left(pdg_{1464} \right)} = \left(\frac{e^{pdg_{1464}}}{2} + \frac{e^{- pdg_{1464}}}{2}\right)^{2} - \frac{\left(e^{pdg_{1464}} - e^{- pdg_{1464}}\right)^{2}}{4}\)
  1. 2762326680; locally 4009221:
    \(\cosh^2 x - \sinh^2 x = \frac{1}{4}\left( \exp(2x)+1+1+\exp(-2x) - \left(\exp(2x)-1-1+\exp(-2x)\right) \right)\)
    \(- \sinh^{2}{\left(pdg_{1464} \right)} + \cosh^{2}{\left(pdg_{1464} \right)} = 1\)
valid 8563535636:
2762326680:
8563535636:
2762326680:
hyperbolic trigonometric identities declare initial expr
  1. 8747785338; locally 7404421:
    \(\cos(i x) = \cosh(x)\)
    \(\cos{\left(pdg_{1464} pdg_{4621} \right)} = \cosh{\left(pdg_{1464} \right)}\)
no validation is available for declarations 8747785338:
8747785338:
hyperbolic trigonometric identities subtract expr 1 from expr 2
  1. 6031385191; locally 7844176:
    \(\sinh^2 x = \left(\frac{\exp(x) - \exp(-x)}{2}\right)\left(\frac{\exp(x) - \exp(-x)}{2}\right)\)
    \(\sinh^{2}{\left(pdg_{1464} \right)} = \left(\frac{e^{pdg_{1464}}}{2} - \frac{e^{- pdg_{1464}}}{2}\right)^{2}\)
  2. 8532702080; locally 9245668:
    \(\cosh^2 x = \left(\frac{\exp(x) + \exp(-x)}{2}\right)\left(\frac{\exp(x) + \exp(-x)}{2}\right)\)
    \(\cosh^{2}{\left(pdg_{1464} \right)} = \left(\frac{e^{pdg_{1464}}}{2} + \frac{e^{- pdg_{1464}}}{2}\right)^{2}\)
  1. 8563535636; locally 4001109:
    \(\cosh^2 x - \sinh^2 x = \left(\frac{\exp(x) + \exp(-x)}{2}\right)\left(\frac{\exp(x) + \exp(-x)}{2}\right) - \left(\frac{\exp(x) - \exp(-x)}{2}\right)\left(\frac{\exp(x) - \exp(-x)}{2}\right)\)
    \(- \sinh^{2}{\left(pdg_{1464} \right)} + \cosh^{2}{\left(pdg_{1464} \right)} = \left(\frac{e^{pdg_{1464}}}{2} + \frac{e^{- pdg_{1464}}}{2}\right)^{2} - \frac{\left(e^{pdg_{1464}} - e^{- pdg_{1464}}\right)^{2}}{4}\)
valid 6031385191:
8532702080:
8563535636:
6031385191:
8532702080:
8563535636:
hyperbolic trigonometric identities multiply expr 1 by expr 2
  1. 6404535647; locally 4319733:
    \(\cosh x = \frac{\exp(x) + \exp(-x)}{2}\)
    \(\cosh{\left(pdg_{1464} \right)} = \frac{e^{pdg_{1464}}}{2} + \frac{e^{- pdg_{1464}}}{2}\)
  2. 6404535647; locally 4319733:
    \(\cosh x = \frac{\exp(x) + \exp(-x)}{2}\)
    \(\cosh{\left(pdg_{1464} \right)} = \frac{e^{pdg_{1464}}}{2} + \frac{e^{- pdg_{1464}}}{2}\)
  1. 8532702080; locally 9245668:
    \(\cosh^2 x = \left(\frac{\exp(x) + \exp(-x)}{2}\right)\left(\frac{\exp(x) + \exp(-x)}{2}\right)\)
    \(\cosh^{2}{\left(pdg_{1464} \right)} = \left(\frac{e^{pdg_{1464}}}{2} + \frac{e^{- pdg_{1464}}}{2}\right)^{2}\)
valid 6404535647:
6404535647:
8532702080:
6404535647:
6404535647:
8532702080:
hyperbolic trigonometric identities declare initial expr
  1. 6404535647; locally 4319733:
    \(\cosh x = \frac{\exp(x) + \exp(-x)}{2}\)
    \(\cosh{\left(pdg_{1464} \right)} = \frac{e^{pdg_{1464}}}{2} + \frac{e^{- pdg_{1464}}}{2}\)
no validation is available for declarations 6404535647:
6404535647:
Langmuir Adsorption divide both sides by
  1. 3488423948; locally 2575148:
    \(k_{\rm adsorption} p_A [S] = k_{\rm desorption} [A_{\rm adsorption}]\)
    \(pdg_{6850} pdg_{9046} pdg_{9067} = pdg_{4940} pdg_{8379}\)
  1. 1945487024:
    \(p_A [S]\)
    \(pdg_{9046} pdg_{9067}\)
  1. 5085809757; locally 2552367:
    \(\frac{k_{\rm adsorption}}{k_{\rm desorption}} = \frac{[A_{\rm adsorption}]}{p_A [S]}\)
    \(\frac{pdg_{6850}}{pdg_{8379}} = \frac{pdg_{4940}}{pdg_{9046} pdg_{9067}}\)
LHS diff is pdg6850 - pdg6850/pdg8379 RHS diff is pdg4940*(pdg8379 - 1)/(pdg9046*pdg9067) 3488423948:
5085809757:
3488423948:
5085809757:
Langmuir Adsorption declare initial expr
  1. 7924063906; locally 5044727:
    \(K_{equilibrium} = \frac{k_{\rm adsorption}}{k_{\rm desorption}}\)
    \(pdg_{4933} = \frac{pdg_{6850}}{pdg_{8379}}\)
no validation is available for declarations 7924063906:
7924063906:
definition of equilibrium
Langmuir Adsorption divide both sides by
  1. 3488423948; locally 2575148:
    \(k_{\rm adsorption} p_A [S] = k_{\rm desorption} [A_{\rm adsorption}]\)
    \(pdg_{6850} pdg_{9046} pdg_{9067} = pdg_{4940} pdg_{8379}\)
  1. 8162179726:
    \(k_{\rm adsorption} p_A\)
    \(pdg_{6850} pdg_{9046}\)
  1. 9562264720; locally 5003983:
    \([S] = \frac{k_{\rm desorption} [A_{\rm adsorption}]}{k_{\rm adsorption} p_A}\)
    \(pdg_{9067} = \frac{pdg_{4940} pdg_{8379}}{pdg_{6850} pdg_{9046}}\)
valid 3488423948:
9562264720:
3488423948:
9562264720:
Langmuir Adsorption raise both sides to power
  1. 2114909846; locally 7042641:
    \(\theta_A = \frac{[A_{\rm adsorption}]}{[S_0]}\)
    \(pdg_{1791} = \frac{pdg_{4940}}{pdg_{3037}}\)
  1. 7564010952:
    \(-1\)
    \(-1\)
  1. 8131665171; locally 4039036:
    \(\frac{1}{\theta_A} = \frac{[S_0]}{[A_{\rm adsorption}]}\)
    \(\frac{1}{pdg_{1791}} = \frac{pdg_{3037}}{pdg_{4940}}\)
no check is performed 2114909846:
8131665171:
2114909846:
8131665171:
Langmuir Adsorption raise both sides to power
  1. 7924063906; locally 5044727:
    \(K_{equilibrium} = \frac{k_{\rm adsorption}}{k_{\rm desorption}}\)
    \(pdg_{4933} = \frac{pdg_{6850}}{pdg_{8379}}\)
  1. 5516739892:
    \(-1\)
    \(-1\)
  1. 6240546932; locally 8620451:
    \(\frac{1}{K_{equilibrium}} = \frac{k_{\rm desorption}}{k_{\rm adsorption}}\)
    \(\frac{1}{pdg_{4933}} = \frac{pdg_{8379}}{pdg_{6850}}\)
no check is performed 7924063906:
6240546932:
7924063906:
6240546932:
Langmuir Adsorption change variable X to Y
  1. 7928111771; locally 8754546:
    \(\frac{1}{\theta_A} = \frac{1}{K_{\rm equilibrium} p_A} + 1\)
    \(\frac{1}{pdg_{1791}} = 1 + \frac{1}{pdg_{4933} pdg_{9046}}\)
  1. 6346902704:
    \(1\)
    \(1\)
  2. 7630953440:
    \(\frac{K_{\rm equilibrium} p_A}{K_{\rm equilibrium} p_A}\)
    \(1\)
  1. 7267424860; locally 4829867:
    \(\frac{1}{\theta_A} = \frac{1+(K_{\rm equilibrium}\ p_A)}{K_{\rm equilibrium}\ p_A}\)
    \(\frac{1}{pdg_{1791}} = \frac{pdg_{4933} pdg_{9046} + 1}{pdg_{4933} pdg_{9046}}\)
valid 7928111771:
7267424860:
7928111771:
7267424860:
Langmuir Adsorption divide both sides by
  1. 7517073655; locally 4487508:
    \([S_0] = \left(\frac{1}{K_{\rm equilibrium}} \frac{1}{p_A} + 1\right)[A_{\rm adsorption}]\)
    \(pdg_{3037} = pdg_{4940} \left(1 + \frac{1}{pdg_{4933} pdg_{9046}}\right)\)
  1. 5426418187:
    \([A_{\rm adsorption}]\)
    \(pdg_{4940}\)
  1. 6457999644; locally 5382248:
    \(\frac{[S_0]}{[A_{\rm adsorption}]} = \frac{1}{K_{\rm equilibrium}} \frac{1}{p_A} + 1\)
    \(\frac{pdg_{3037}}{pdg_{4940}} = 1 + \frac{1}{pdg_{4933} pdg_{9046}}\)
valid 7517073655:
6457999644:
7517073655:
6457999644:
Langmuir Adsorption substitute RHS of expr 1 into expr 2
  1. 8131665171; locally 4039036:
    \(\frac{1}{\theta_A} = \frac{[S_0]}{[A_{\rm adsorption}]}\)
    \(\frac{1}{pdg_{1791}} = \frac{pdg_{3037}}{pdg_{4940}}\)
  2. 6457999644; locally 5382248:
    \(\frac{[S_0]}{[A_{\rm adsorption}]} = \frac{1}{K_{\rm equilibrium}} \frac{1}{p_A} + 1\)
    \(\frac{pdg_{3037}}{pdg_{4940}} = 1 + \frac{1}{pdg_{4933} pdg_{9046}}\)
  1. 7928111771; locally 8754546:
    \(\frac{1}{\theta_A} = \frac{1}{K_{\rm equilibrium} p_A} + 1\)
    \(\frac{1}{pdg_{1791}} = 1 + \frac{1}{pdg_{4933} pdg_{9046}}\)
valid 8131665171:
6457999644:
7928111771:
8131665171:
6457999644:
7928111771:
Langmuir Adsorption raise both sides to power
  1. 7267424860; locally 4829867:
    \(\frac{1}{\theta_A} = \frac{1+(K_{\rm equilibrium}\ p_A)}{K_{\rm equilibrium}\ p_A}\)
    \(\frac{1}{pdg_{1791}} = \frac{pdg_{4933} pdg_{9046} + 1}{pdg_{4933} pdg_{9046}}\)
  1. 3911081515:
    \(-1\)
    \(-1\)
  1. 4689334676; locally 8722827:
    \(\theta_A = \frac{K_{\rm equilibrium}\ p_A}{1+K_{\rm equilibrium}\ p_A}\)
    \(pdg_{1791} = \frac{pdg_{4933} pdg_{9046}}{pdg_{4933} pdg_{9046} + 1}\)
no check is performed 7267424860:
4689334676:
7267424860:
4689334676:
Langmuir Adsorption declare assumption
  1. 6783009163; locally 9492936:
    \(r_{\rm adsorption} = r_{\rm desorption}\)
    \(pdg_{6687} = pdg_{1966}\)
no validation is available for declarations 6783009163:
6783009163:
Langmuir Adsorption substitute LHS of expr 1 into expr 2
  1. 6955192897; locally 8859060:
    \(r_{\rm desorption} = k_{\rm desorption} [A_{\rm adsorption}]\)
    \(pdg_{1966} = pdg_{4940} pdg_{8379}\)
  2. 3507029294; locally 1615903:
    \(k_{\rm adsorption} p_A [S] = r_{\rm desorption}\)
    \(pdg_{6850} pdg_{9046} pdg_{9067} = pdg_{1966}\)
  1. 3488423948; locally 2575148:
    \(k_{\rm adsorption} p_A [S] = k_{\rm desorption} [A_{\rm adsorption}]\)
    \(pdg_{6850} pdg_{9046} pdg_{9067} = pdg_{4940} pdg_{8379}\)
valid 6955192897:
3507029294:
3488423948:
6955192897:
3507029294:
3488423948:
Langmuir Adsorption declare initial expr
  1. 2114909846; locally 7042641:
    \(\theta_A = \frac{[A_{\rm adsorption}]}{[S_0]}\)
    \(pdg_{1791} = \frac{pdg_{4940}}{pdg_{3037}}\)
no validation is available for declarations 2114909846:
2114909846:
Langmuir Adsorption substitute LHS of expr 1 into expr 2
  1. 3736177473; locally 7133735:
    \(r_{\rm adsorption} = k_{\rm adsorption} p_A [S]\)
    \(pdg_{6687} = pdg_{6850} pdg_{9046} pdg_{9067}\)
  2. 6783009163; locally 9492936:
    \(r_{\rm adsorption} = r_{\rm desorption}\)
    \(pdg_{6687} = pdg_{1966}\)
  1. 3507029294; locally 1615903:
    \(k_{\rm adsorption} p_A [S] = r_{\rm desorption}\)
    \(pdg_{6850} pdg_{9046} pdg_{9067} = pdg_{1966}\)
valid 3736177473:
6783009163:
3507029294:
3736177473:
6783009163:
3507029294:
Langmuir Adsorption declare initial expr
  1. 6955192897; locally 8859060:
    \(r_{\rm desorption} = k_{\rm desorption} [A_{\rm adsorption}]\)
    \(pdg_{1966} = pdg_{4940} pdg_{8379}\)
no validation is available for declarations 6955192897:
6955192897:
Langmuir Adsorption declare final expr
  1. 4689334676; locally 8722827:
    \(\theta_A = \frac{K_{\rm equilibrium}\ p_A}{1+K_{\rm equilibrium}\ p_A}\)
    \(pdg_{1791} = \frac{pdg_{4933} pdg_{9046}}{pdg_{4933} pdg_{9046} + 1}\)
no validation is available for declarations 4689334676:
4689334676:
Langmuir Adsorption declare initial expr
  1. 3599953931; locally 7265984:
    \([S_0] = [S] + [A_{\rm adsorption}]\)
    \(pdg_{3037} = pdg_{4940} + pdg_{9067}\)
no validation is available for declarations 3599953931:
3599953931:
The concentration of all sites by summing the concentration of free sites [S] and occupied sites
Langmuir Adsorption substitute LHS of expr 1 into expr 2
  1. 9562264720; locally 5003983:
    \([S] = \frac{k_{\rm desorption} [A_{\rm adsorption}]}{k_{\rm adsorption} p_A}\)
    \(pdg_{9067} = \frac{pdg_{4940} pdg_{8379}}{pdg_{6850} pdg_{9046}}\)
  2. 3599953931; locally 7265984:
    \([S_0] = [S] + [A_{\rm adsorption}]\)
    \(pdg_{3037} = pdg_{4940} + pdg_{9067}\)
  1. 4301729661; locally 1337055:
    \([S_0] = \frac{[A_{\rm adsorption}]}{\left( \frac{k_{\rm adsorption}}{k_{\rm desorption}} \right) p_A} + [A_{\rm adsorption}]\)
    \(pdg_{3037} = pdg_{4940} + \frac{pdg_{4940} pdg_{8379}}{pdg_{6850} pdg_{9046}}\)
valid 9562264720:
3599953931:
4301729661:
9562264720:
3599953931:
4301729661:
Langmuir Adsorption factor out X
  1. 4301729661; locally 1337055:
    \([S_0] = \frac{[A_{\rm adsorption}]}{\left( \frac{k_{\rm adsorption}}{k_{\rm desorption}} \right) p_A} + [A_{\rm adsorption}]\)
    \(pdg_{3037} = pdg_{4940} + \frac{pdg_{4940} pdg_{8379}}{pdg_{6850} pdg_{9046}}\)
  1. 1268845856:
    \([A_{\rm adsorption}]\)
    \(pdg_{4940}\)
  1. 2168306601; locally 9195751:
    \([S_0] = \left(\frac{k_{\rm desorption}}{k_{\rm adsorption}} \frac{1}{p_A} + 1\right)[A_{\rm adsorption}]\)
    \(pdg_{3037} = pdg_{4940} \left(1 + \frac{pdg_{8379}}{pdg_{6850} pdg_{9046}}\right)\)
valid 4301729661:
2168306601:
4301729661:
2168306601:
Langmuir Adsorption substitute RHS of expr 1 into expr 2
  1. 6240546932; locally 8620451:
    \(\frac{1}{K_{equilibrium}} = \frac{k_{\rm desorption}}{k_{\rm adsorption}}\)
    \(\frac{1}{pdg_{4933}} = \frac{pdg_{8379}}{pdg_{6850}}\)
  2. 2168306601; locally 9195751:
    \([S_0] = \left(\frac{k_{\rm desorption}}{k_{\rm adsorption}} \frac{1}{p_A} + 1\right)[A_{\rm adsorption}]\)
    \(pdg_{3037} = pdg_{4940} \left(1 + \frac{pdg_{8379}}{pdg_{6850} pdg_{9046}}\right)\)
  1. 7517073655; locally 4487508:
    \([S_0] = \left(\frac{1}{K_{\rm equilibrium}} \frac{1}{p_A} + 1\right)[A_{\rm adsorption}]\)
    \(pdg_{3037} = pdg_{4940} \left(1 + \frac{1}{pdg_{4933} pdg_{9046}}\right)\)
valid 6240546932:
2168306601:
7517073655:
6240546932:
2168306601:
7517073655:
Langmuir Adsorption declare initial expr
  1. 3736177473; locally 7133735:
    \(r_{\rm adsorption} = k_{\rm adsorption} p_A [S]\)
    \(pdg_{6687} = pdg_{6850} pdg_{9046} pdg_{9067}\)
no validation is available for declarations 3736177473:
3736177473:
Kepler's Third Law: period squared propto distance cubed substitute LHS of expr 1 into expr 2
  1. 3132131132; locally 2340248:
    \(\omega = \frac{2\pi}{T}\)
    \(pdg_{2321} = \frac{2 pdg_{3141}}{pdg_{9491}}\)
  2. 3896798826; locally 9388996:
    \(m_2 d_2 \omega^2 = G \frac{m_1 m_2}{r^2}\)
    \(pdg_{2321}^{2} pdg_{2798} pdg_{4851} = \frac{pdg_{4851} pdg_{5022} pdg_{6277}}{pdg_{2530}^{2}}\)
  1. 9070394000; locally 4575586:
    \(m_2 d_2 \frac{4 \pi^2}{T^2} = G \frac{m_1 m_2}{r^2}\)
    \(\frac{4 pdg_{2798} pdg_{3141}^{2} pdg_{4851}}{pdg_{9491}^{2}} = \frac{pdg_{4851} pdg_{5022} pdg_{6277}}{pdg_{2530}^{2}}\)
valid 3132131132:
3896798826:
9070394000:
3132131132:
3896798826:
9070394000:
Kepler's Third Law: period squared propto distance cubed substitute LHS of expr 1 into expr 2
  1. 2217103163; locally 9110206:
    \(\frac{m_1 d_1}{d_2} = m_2\)
    \(\frac{pdg_{5022} pdg_{7652}}{pdg_{2798}} = pdg_{4851}\)
  2. 4188580242; locally 1709969:
    \(T^2 = \frac{r^3 4 \pi^2}{\left(m_1+\left(\frac{m_1}{d_2}d_1\right)\right)G}\)
    \(pdg_{9491}^{2} = \frac{4 pdg_{2530}^{3} pdg_{3141}^{2}}{pdg_{6277} \left(pdg_{5022} + \frac{pdg_{5022} pdg_{7652}}{pdg_{2798}}\right)}\)
  1. 5658865948; locally 8711868:
    \(T^2 = \frac{r^3 4 \pi^2}{(m_1+m_2)G}\)
    \(pdg_{9491}^{2} = \frac{4 pdg_{2530}^{3} pdg_{3141}^{2}}{pdg_{6277} \left(pdg_{4851} + pdg_{5022}\right)}\)
valid 2217103163:
4188580242:
5658865948:
2217103163:
4188580242:
5658865948:
Kepler's Third Law: period squared propto distance cubed declare initial expr
  1. 3132131132; locally 2340248:
    \(\omega = \frac{2\pi}{T}\)
    \(pdg_{2321} = \frac{2 pdg_{3141}}{pdg_{9491}}\)
no validation is available for declarations 3132131132:
3132131132:
Kepler's Third Law: period squared propto distance cubed multiply RHS by unity
  1. 9170048197; locally 7795202:
    \(T^2 = d_2 4 \pi^2 \frac{r^2}{G m_1}\)
    \(pdg_{9491}^{2} = \frac{4 pdg_{2530}^{2} pdg_{2798} pdg_{3141}^{2}}{pdg_{5022} pdg_{6277}}\)
  1. 8122039815:
    \(\frac{d_1+d_2}{d_1+d_2}\)
    \(1\)
  1. 1811867899; locally 6577160:
    \(T^2 = \frac{d_1+d_2}{d_1+d_2} d_2 4 \pi^2 \frac{r^2}{G m_1}\)
    \(pdg_{9491}^{2} = \frac{4 pdg_{2530}^{2} pdg_{2798} pdg_{3141}^{2}}{pdg_{5022} pdg_{6277}}\)
valid 9170048197:
1811867899:
9170048197:
1811867899:
Kepler's Third Law: period squared propto distance cubed change two variables in expr
  1. 4393258808; locally 8072137:
    \(F_{\rm centripetal} = m r \omega^2\)
    \(pdg_{1687} = pdg_{2321}^{2} pdg_{2530} pdg_{5156}\)
  1. 8916428651:
    \(m\)
    \(pdg_{5156}\)
  2. 1635147226:
    \(m_2\)
    \(pdg_{4851}\)
  3. 9884115626:
    \(r\)
    \(pdg_{2530}\)
  4. 1036530438:
    \(d_2\)
    \(pdg_{2798}\)
  1. 3649797559; locally 6652843:
    \(F_{\rm centripetal} = m_2 d_2 \omega^2\)
    \(pdg_{1687} = pdg_{2321}^{2} pdg_{2798} pdg_{4851}\)
valid 4393258808:
3649797559:
4393258808:
3649797559:
Kepler's Third Law: period squared propto distance cubed raise both sides to power
  1. 9152823411; locally 7556753:
    \(\frac{1}{T^2} = \frac{1}{d_2 4 \pi^2} G \frac{m_1}{r^2}\)
    \(\frac{1}{pdg_{9491}^{2}} = \frac{pdg_{5022} pdg_{6277}}{4 pdg_{2530}^{2} pdg_{2798} pdg_{3141}^{2}}\)
  1. 7445388869:
    \(-1\)
    \(-1\)
  1. 9170048197; locally 7795202:
    \(T^2 = d_2 4 \pi^2 \frac{r^2}{G m_1}\)
    \(pdg_{9491}^{2} = \frac{4 pdg_{2530}^{2} pdg_{2798} pdg_{3141}^{2}}{pdg_{5022} pdg_{6277}}\)
no check is performed 9152823411:
9170048197:
9152823411:
9170048197:
Kepler's Third Law: period squared propto distance cubed substitute LHS of expr 1 into expr 2
  1. 3649797559; locally 6652843:
    \(F_{\rm centripetal} = m_2 d_2 \omega^2\)
    \(pdg_{1687} = pdg_{2321}^{2} pdg_{2798} pdg_{4851}\)
  2. 6829281943; locally 4382594:
    \(F_{\rm centripetal} = G \frac{m_1 m_2}{r^2}\)
    \(pdg_{1687} = \frac{pdg_{4851} pdg_{5022} pdg_{6277}}{pdg_{2530}^{2}}\)
  1. 3896798826; locally 9388996:
    \(m_2 d_2 \omega^2 = G \frac{m_1 m_2}{r^2}\)
    \(pdg_{2321}^{2} pdg_{2798} pdg_{4851} = \frac{pdg_{4851} pdg_{5022} pdg_{6277}}{pdg_{2530}^{2}}\)
valid 3649797559:
6829281943:
3896798826:
3649797559:
6829281943:
3896798826:
Kepler's Third Law: period squared propto distance cubed declare initial expr
  1. 5128670694; locally 4476518:
    \(m_1 d_1 = m_2 d_2\)
    \(pdg_{5022} pdg_{7652} = pdg_{2798} pdg_{4851}\)
no validation is available for declarations 5128670694:
5128670694:
Kepler's Third Law: period squared propto distance cubed simplify
  1. 3781109867; locally 6644719:
    \(T^2 = \frac{r^3 4 \pi^2}{(d_1+d_2) \frac{m_1}{d_2}G}\)
    \(pdg_{9491}^{2} = \frac{4 pdg_{2530}^{3} pdg_{2798} pdg_{3141}^{2}}{pdg_{5022} pdg_{6277} \left(pdg_{2798} + pdg_{7652}\right)}\)
  1. 4188580242; locally 1709969:
    \(T^2 = \frac{r^3 4 \pi^2}{\left(m_1+\left(\frac{m_1}{d_2}d_1\right)\right)G}\)
    \(pdg_{9491}^{2} = \frac{4 pdg_{2530}^{3} pdg_{3141}^{2}}{pdg_{6277} \left(pdg_{5022} + \frac{pdg_{5022} pdg_{7652}}{pdg_{2798}}\right)}\)
valid 3781109867:
4188580242:
3781109867:
4188580242:
Kepler's Third Law: period squared propto distance cubed declare initial expr
  1. 1292735067; locally 5331094:
    \(F_{gravitational} = G \frac{m_1 m_2}{r^2}\)
    \(pdg_{2867} = \frac{pdg_{4851} pdg_{5022} pdg_{6277}}{pdg_{2530}^{2}}\)
no validation is available for declarations 1292735067:
1292735067:
Kepler's Third Law: period squared propto distance cubed multiply both sides by
  1. 9838128064; locally 6210646:
    \(d_2 \frac{4 \pi^2}{T^2} = G \frac{m_1}{r^2}\)
    \(\frac{4 pdg_{2798} pdg_{3141}^{2}}{pdg_{9491}^{2}} = \frac{pdg_{5022} pdg_{6277}}{pdg_{2530}^{2}}\)
  1. 5684907106:
    \(\frac{1}{d_2 4 \pi^2}\)
    \(\frac{1}{4 pdg_{2798} pdg_{3141}^{2}}\)
  1. 9152823411; locally 7556753:
    \(\frac{1}{T^2} = \frac{1}{d_2 4 \pi^2} G \frac{m_1}{r^2}\)
    \(\frac{1}{pdg_{9491}^{2}} = \frac{pdg_{5022} pdg_{6277}}{4 pdg_{2530}^{2} pdg_{2798} pdg_{3141}^{2}}\)
valid 9838128064:
9152823411:
9838128064:
9152823411:
Kepler's Third Law: period squared propto distance cubed declare final expr
  1. 5658865948; locally 8711868:
    \(T^2 = \frac{r^3 4 \pi^2}{(m_1+m_2)G}\)
    \(pdg_{9491}^{2} = \frac{4 pdg_{2530}^{3} pdg_{3141}^{2}}{pdg_{6277} \left(pdg_{4851} + pdg_{5022}\right)}\)
no validation is available for declarations 5658865948:
5658865948:
period squared propto distance cubed
Kepler's Third Law: period squared propto distance cubed multiply RHS by unity
  1. 2906548078; locally 8324356:
    \(T^2 = \frac{r}{d_1+d_2} d_2 4 \pi^2 \frac{r^2}{G m_1}\)
    \(pdg_{9491}^{2} = \frac{4 pdg_{2530}^{3} pdg_{2798} pdg_{3141}^{2}}{pdg_{5022} pdg_{6277} \left(pdg_{2798} + pdg_{7652}\right)}\)
  1. 9524810853:
    \(\frac{1/d_2}{1/d_2}\)
    \(1\)
  1. 3781109867; locally 6644719:
    \(T^2 = \frac{r^3 4 \pi^2}{(d_1+d_2) \frac{m_1}{d_2}G}\)
    \(pdg_{9491}^{2} = \frac{4 pdg_{2530}^{3} pdg_{2798} pdg_{3141}^{2}}{pdg_{5022} pdg_{6277} \left(pdg_{2798} + pdg_{7652}\right)}\)
valid 2906548078:
3781109867:
2906548078:
3781109867:
Kepler's Third Law: period squared propto distance cubed declare assumption
  1. 5586102077; locally 8233899:
    \(r = d_1 + d_2\)
    \(pdg_{2530} = pdg_{2798} + pdg_{7652}\)
no validation is available for declarations 5586102077:
5586102077:
Kepler's Third Law: period squared propto distance cubed substitute RHS of expr 1 into expr 2
  1. 3176662571; locally 2600680:
    \(F_{\rm centripetal} = F_{\rm gravity}\)
    \(pdg_{2867} = pdg_{1687}\)
  2. 1292735067; locally 5331094:
    \(F_{gravitational} = G \frac{m_1 m_2}{r^2}\)
    \(pdg_{2867} = \frac{pdg_{4851} pdg_{5022} pdg_{6277}}{pdg_{2530}^{2}}\)
  1. 6829281943; locally 4382594:
    \(F_{\rm centripetal} = G \frac{m_1 m_2}{r^2}\)
    \(pdg_{1687} = \frac{pdg_{4851} pdg_{5022} pdg_{6277}}{pdg_{2530}^{2}}\)
LHS diff is -pdg1687 + pdg2867 RHS diff is 0 3176662571:
1292735067:
6829281943:
3176662571:
1292735067:
6829281943:
Kepler's Third Law: period squared propto distance cubed divide both sides by
  1. 5128670694; locally 4476518:
    \(m_1 d_1 = m_2 d_2\)
    \(pdg_{5022} pdg_{7652} = pdg_{2798} pdg_{4851}\)
  1. 8044416349:
    \(d_2\)
    \(pdg_{2798}\)
  1. 2217103163; locally 9110206:
    \(\frac{m_1 d_1}{d_2} = m_2\)
    \(\frac{pdg_{5022} pdg_{7652}}{pdg_{2798}} = pdg_{4851}\)
valid 5128670694:
2217103163:
5128670694:
2217103163:
Kepler's Third Law: period squared propto distance cubed declare assumption
  1. 3176662571; locally 2600680:
    \(F_{\rm centripetal} = F_{\rm gravity}\)
    \(pdg_{2867} = pdg_{1687}\)
no validation is available for declarations 3176662571:
3176662571:
Kepler's Third Law: period squared propto distance cubed simplify
  1. 9070394000; locally 4575586:
    \(m_2 d_2 \frac{4 \pi^2}{T^2} = G \frac{m_1 m_2}{r^2}\)
    \(\frac{4 pdg_{2798} pdg_{3141}^{2} pdg_{4851}}{pdg_{9491}^{2}} = \frac{pdg_{4851} pdg_{5022} pdg_{6277}}{pdg_{2530}^{2}}\)
  1. 9838128064; locally 6210646:
    \(d_2 \frac{4 \pi^2}{T^2} = G \frac{m_1}{r^2}\)
    \(\frac{4 pdg_{2798} pdg_{3141}^{2}}{pdg_{9491}^{2}} = \frac{pdg_{5022} pdg_{6277}}{pdg_{2530}^{2}}\)
LHS diff is 4*pdg2798*pdg3141**2*(pdg4851 - 1)/pdg9491**2 RHS diff is pdg5022*pdg6277*(pdg4851 - 1)/pdg2530**2 9070394000:
9838128064:
9070394000:
9838128064:
Kepler's Third Law: period squared propto distance cubed substitute RHS of expr 1 into expr 2
  1. 5586102077; locally 8233899:
    \(r = d_1 + d_2\)
    \(pdg_{2530} = pdg_{2798} + pdg_{7652}\)
  2. 1811867899; locally 6577160:
    \(T^2 = \frac{d_1+d_2}{d_1+d_2} d_2 4 \pi^2 \frac{r^2}{G m_1}\)
    \(pdg_{9491}^{2} = \frac{4 pdg_{2530}^{2} pdg_{2798} pdg_{3141}^{2}}{pdg_{5022} pdg_{6277}}\)
  1. 2906548078; locally 8324356:
    \(T^2 = \frac{r}{d_1+d_2} d_2 4 \pi^2 \frac{r^2}{G m_1}\)
    \(pdg_{9491}^{2} = \frac{4 pdg_{2530}^{3} pdg_{2798} pdg_{3141}^{2}}{pdg_{5022} pdg_{6277} \left(pdg_{2798} + pdg_{7652}\right)}\)
LHS diff is 0 RHS diff is 4*pdg2530**2*pdg2798*pdg3141**2*(-pdg2530 + pdg2798 + pdg7652)/(pdg5022*pdg6277*(pdg2798 + pdg7652)) 5586102077:
1811867899:
2906548078:
5586102077:
1811867899:
2906548078:
Kepler's Third Law: period squared propto distance cubed declare initial expr
  1. 4393258808; locally 8072137:
    \(F_{\rm centripetal} = m r \omega^2\)
    \(pdg_{1687} = pdg_{2321}^{2} pdg_{2530} pdg_{5156}\)
no validation is available for declarations 4393258808:
4393258808:
frequency and period divide both sides by
  1. 2131616531; locally 2414344:
    \(T f = 1\)
    \(pdg_{4201} pdg_{9491} = 1\)
  1. 9565166889:
    \(T\)
    \(pdg_{9491}\)
  1. 2113211456; locally 5564581:
    \(f = 1/T\)
    \(pdg_{4201} = \frac{1}{pdg_{9491}}\)
valid 2131616531:
2113211456:
2131616531:
2113211456:
frequency and period multiply both sides by
  1. 3131111133; locally 6650345:
    \(T = 1 / f\)
    \(pdg_{9491} = \frac{1}{pdg_{4201}}\)
  1. 9040079362:
    \(f\)
    \(pdg_{4201}\)
  1. 2131616531; locally 2414344:
    \(T f = 1\)
    \(pdg_{4201} pdg_{9491} = 1\)
valid 3131111133:
2131616531:
3131111133:
2131616531:
frequency and period declare final expr
  1. 2113211456; locally 5564581:
    \(f = 1/T\)
    \(pdg_{4201} = \frac{1}{pdg_{9491}}\)
no validation is available for declarations 2113211456:
2113211456:
frequency and period declare initial expr
  1. 3131111133; locally 6650345:
    \(T = 1 / f\)
    \(pdg_{9491} = \frac{1}{pdg_{4201}}\)
no validation is available for declarations 3131111133:
3131111133:
total electrical resistance for circuit with two resistors in series divide both sides by
  1. 2715678478; locally 4870091:
    \(I R_{\rm total} = I R_1 + I R_2\)
    \(pdg_{1908} pdg_{4501} = pdg_{3461} pdg_{4501} + pdg_{4501} pdg_{8697}\)
  1. 7844317489:
    \(I\)
    \(pdg_{4501}\)
  1. 7217021879; locally 5454988:
    \(R_{\rm total} = R_1 + R_2\)
    \(pdg_{1908} = pdg_{3461} + pdg_{8697}\)
valid 2715678478:
7217021879:
2715678478:
7217021879:
total electrical resistance for circuit with two resistors in series change two variables in expr
  1. 4087145886; locally 3843961:
    \(V = I R\)
    \(pdg_{6599} = pdg_{4501} pdg_{6458}\)
  1. 2698469612:
    \(V\)
    \(pdg_{6599}\)
  2. 9830343096:
    \(V_1\)
    \(pdg_{8257}\)
  3. 7774819339:
    \(R\)
    \(pdg_{6458}\)
  4. 9174439158:
    \(R_1\)
    \(pdg_{8697}\)
  1. 7675171493; locally 8012785:
    \(V_1 = I R_1\)
    \(pdg_{8257} = pdg_{4501} pdg_{8697}\)
valid 4087145886:
7675171493:
4087145886:
7675171493:
I is the same across both resistors
total electrical resistance for circuit with two resistors in series change two variables in expr
  1. 4087145886; locally 3843961:
    \(V = I R\)
    \(pdg_{6599} = pdg_{4501} pdg_{6458}\)
  1. 7497687256:
    \(V\)
    \(pdg_{6599}\)
  2. 1608399874:
    \(V_2\)
    \(pdg_{8721}\)
  3. 5890617067:
    \(R\)
    \(pdg_{6458}\)
  4. 1484794622:
    \(R_2\)
    \(pdg_{3461}\)
  1. 6061695358; locally 6379878:
    \(V_2 = I R_2\)
    \(pdg_{8721} = pdg_{3461} pdg_{4501}\)
valid 4087145886:
6061695358:
4087145886:
6061695358:
total electrical resistance for circuit with two resistors in series substitute LHS of three expressions into expr
  1. 4939880586; locally 4107950:
    \(V_{\rm total} = I R_{\rm total}\)
    \(pdg_{4691} = pdg_{1908} pdg_{4501}\)
  2. 7675171493; locally 8012785:
    \(V_1 = I R_1\)
    \(pdg_{8257} = pdg_{4501} pdg_{8697}\)
  3. 6061695358; locally 6379878:
    \(V_2 = I R_2\)
    \(pdg_{8721} = pdg_{3461} pdg_{4501}\)
  4. 9063568209; locally 1124189:
    \(V_{\rm total} = V_1 + V_2\)
    \(pdg_{4691} = pdg_{8257} + pdg_{8721}\)
  1. 2715678478; locally 4870091:
    \(I R_{\rm total} = I R_1 + I R_2\)
    \(pdg_{1908} pdg_{4501} = pdg_{3461} pdg_{4501} + pdg_{4501} pdg_{8697}\)
no check performed 4939880586:
7675171493:
6061695358:
9063568209:
2715678478:
4939880586:
7675171493:
6061695358:
9063568209:
2715678478:
total electrical resistance for circuit with two resistors in series declare initial expr
  1. 4087145886; locally 3843961:
    \(V = I R\)
    \(pdg_{6599} = pdg_{4501} pdg_{6458}\)
no validation is available for declarations 4087145886:
4087145886:
total electrical resistance for circuit with two resistors in series declare initial expr
  1. 4939880586; locally 4107950:
    \(V_{\rm total} = I R_{\rm total}\)
    \(pdg_{4691} = pdg_{1908} pdg_{4501}\)
no validation is available for declarations 4939880586:
4939880586:
total electrical resistance for circuit with two resistors in series declare final expr
  1. 7217021879; locally 5454988:
    \(R_{\rm total} = R_1 + R_2\)
    \(pdg_{1908} = pdg_{3461} + pdg_{8697}\)
no validation is available for declarations 7217021879:
7217021879:
total electrical resistance for circuit with two resistors in series declare initial expr
  1. 9063568209; locally 1124189:
    \(V_{\rm total} = V_1 + V_2\)
    \(pdg_{4691} = pdg_{8257} + pdg_{8721}\)
no validation is available for declarations 9063568209:
9063568209:
voltage is measured across both resistors
projectile path in 2D is parabolic substitute LHS of expr 1 into expr 2
  1. 3274926090; locally 8858248:
    \(t = \frac{x - x_0}{v_{0, x}}\)
    \(pdg_{1467} = \frac{- pdg_{1572} + pdg_{4037}}{pdg_{2958}}\)
  2. 1405465835; locally 5756391:
    \(y = - \frac{1}{2} g t^2 + v_{0, y} t + y_0\)
    \(pdg_{5647} = - \frac{pdg_{1467}^{2} pdg_{1649}}{2} + pdg_{1467} pdg_{9107} + pdg_{1469}\)
  1. 7354529102; locally 9683207:
    \(y = - \frac{1}{2} g \left( \frac{x - x_0}{v_{0, x}} \right)^2 + v_{0, y} \frac{x - x_0}{v_{0, x}} + y_0\)
    \(pdg_{5647} = pdg_{1469} - \frac{pdg_{1649}^{2} \left(- pdg_{1572} + pdg_{4037}\right)^{2}}{2 pdg_{2958}^{2}} + \frac{pdg_{9431} \left(- pdg_{1572} + pdg_{4037}\right)}{pdg_{2958}}\)
LHS diff is 0 RHS diff is (pdg1572 - pdg4037)*(pdg1649*(pdg1572 - pdg4037)*(pdg1649 - 1) + 2*pdg2958*(-pdg9107 + pdg9431))/(2*pdg2958**2) 3274926090:
1405465835:
7354529102:
3274926090:
1405465835:
7354529102:
projectile path in 2D is parabolic divide both sides by
  1. 9882526611; locally 4718749:
    \(v_{0, x} t = x - x_0\)
    \(pdg_{1467} pdg_{2958} = - pdg_{1572} + pdg_{4037}\)
  1. 6050070428:
    \(v_{0, x}\)
    \(pdg_{2958}\)
  1. 3274926090; locally 8858248:
    \(t = \frac{x - x_0}{v_{0, x}}\)
    \(pdg_{1467} = \frac{- pdg_{1572} + pdg_{4037}}{pdg_{2958}}\)
valid 9882526611:
3274926090:
9882526611:
3274926090:
projectile path in 2D is parabolic declare final expr
  1. 7354529102; locally 9683207:
    \(y = - \frac{1}{2} g \left( \frac{x - x_0}{v_{0, x}} \right)^2 + v_{0, y} \frac{x - x_0}{v_{0, x}} + y_0\)
    \(pdg_{5647} = pdg_{1469} - \frac{pdg_{1649}^{2} \left(- pdg_{1572} + pdg_{4037}\right)^{2}}{2 pdg_{2958}^{2}} + \frac{pdg_{9431} \left(- pdg_{1572} + pdg_{4037}\right)}{pdg_{2958}}\)
no validation is available for declarations 7354529102:
7354529102:
expression is a second order polynomial; projecticle motion is parabolic
projectile path in 2D is parabolic declare initial expr
  1. 9882526611; locally 4718749:
    \(v_{0, x} t = x - x_0\)
    \(pdg_{1467} pdg_{2958} = - pdg_{1572} + pdg_{4037}\)
no validation is available for declarations 9882526611:
9882526611:
projectile path in 2D is parabolic declare initial expr
  1. 1405465835; locally 5756391:
    \(y = - \frac{1}{2} g t^2 + v_{0, y} t + y_0\)
    \(pdg_{5647} = - \frac{pdg_{1467}^{2} pdg_{1649}}{2} + pdg_{1467} pdg_{9107} + pdg_{1469}\)
no validation is available for declarations 1405465835:
1405465835:
work and force and energy substitute LHS of two expressions into expr
  1. 7676652285; locally 8207477:
    \(KE_2 = \frac{1}{2} m v_2^2\)
    \(pdg_{1352} = \frac{pdg_{4770}^{2} pdg_{5156}}{2}\)
  2. 4928007622; locally 8883350:
    \(KE_1 = \frac{1}{2} m v_1^2\)
    \(pdg_{1955} = \frac{pdg_{2473}^{2} pdg_{5156}}{2}\)
  3. 4811121942; locally 4236963:
    \(W = \frac{1}{2} m v_2^2 - \frac{1}{2} m v_1^2\)
    \(pdg_{6789} = - \frac{pdg_{2473}^{2} pdg_{5156}}{2} + \frac{pdg_{4770}^{2} pdg_{5156}}{2}\)
  1. 3360172339; locally 4943050:
    \(W = KE_2 - KE_1\)
    \(pdg_{6789} = pdg_{1352} - pdg_{1955}\)
failed 7676652285:
4928007622:
4811121942:
3360172339:
7676652285:
4928007622:
4811121942:
3360172339:
work and force and energy integrate
  1. 1590774089; locally 2237799:
    \(dW = F dx\)
    \(pdg_{9398} = pdg_{4202} pdg_{9199}\)
  1. 5542528160; locally 2565189:
    \(\int dW = F \int_0^x dx\)
    \(\int 1\, dpdg_{6789} = pdg_{4202} \int\limits_{0}^{pdg_{4037}} 1\, dpdg_{4037}\)
no check performed 1590774089:
5542528160:
1590774089:
5542528160:
work and force and energy simplify
  1. 9413699705; locally 6760874:
    \(W = m a \frac{v_2^2 - v_1^2}{2 a}\)
    \(pdg_{6789} = pdg_{5156} \left(- \frac{pdg_{2473}^{2}}{2} + \frac{pdg_{4770}^{2}}{2}\right)\)
  1. 4811121942; locally 4236963:
    \(W = \frac{1}{2} m v_2^2 - \frac{1}{2} m v_1^2\)
    \(pdg_{6789} = - \frac{pdg_{2473}^{2} pdg_{5156}}{2} + \frac{pdg_{4770}^{2} pdg_{5156}}{2}\)
valid 9413699705:
4811121942:
9413699705:
4811121942:
work and force and energy declare final expr
  1. 3360172339; locally 4943050:
    \(W = KE_2 - KE_1\)
    \(pdg_{6789} = pdg_{1352} - pdg_{1955}\)
no validation is available for declarations 3360172339:
3360172339:
work and force and energy evaluate definite integral
  1. 5542528160; locally 2565189:
    \(\int dW = F \int_0^x dx\)
    \(\int 1\, dpdg_{6789} = pdg_{4202} \int\limits_{0}^{pdg_{4037}} 1\, dpdg_{4037}\)
  1. 3512166162; locally 7362045:
    \(W = F x\)
    \(pdg_{6789} = pdg_{4037} pdg_{4202}\)
valid 5542528160:
3512166162:
5542528160:
3512166162:
work and force and energy declare initial expr
  1. 1590774089; locally 2237799:
    \(dW = F dx\)
    \(pdg_{9398} = pdg_{4202} pdg_{9199}\)
no validation is available for declarations 1590774089:
1590774089:
work and force and energy substitute LHS of expr 1 into expr 2
  1. 3512166162; locally 7362045:
    \(W = F x\)
    \(pdg_{6789} = pdg_{4037} pdg_{4202}\)
  2. 5345738321; locally 3086821:
    \(F = m a\)
    \(pdg_{4202} = pdg_{5156} pdg_{9140}\)
  1. 8953094349; locally 6167182:
    \(W = m a x\)
    \(pdg_{6789} = pdg_{4037} pdg_{5156} pdg_{9140}\)
LHS diff is pdg4202 - pdg6789 RHS diff is pdg5156*pdg9140*(1 - pdg4037) 3512166162:
5345738321:
8953094349:
3512166162:
5345738321:
8953094349:
work and force and energy change three variables in expr
  1. 5611024898; locally 4741344:
    \(d = \frac{1}{2 a} (v^2 - v_0^2)\)
    \(pdg_{1943} = \frac{pdg_{1357}^{2} - pdg_{5153}^{2}}{2 pdg_{9140}}\)
  1. 9623791270:
    \(d\)
    \(pdg_{4037}\)
  2. 8111389082:
    \(x\)
    \(pdg_{4037}\)
  3. 3652511721:
    \(v\)
    \(pdg_{1357}\)
  4. 6701855578:
    \(v_2\)
    \(pdg_{4770}\)
  5. 5398681502:
    \(v\)
    \(pdg_{1357}\)
  6. 3183197515:
    \(v_1\)
    \(pdg_{2473}\)
  1. 3253234559; locally 5997798:
    \(x = \frac{v_2^2 - v_1^2}{2 a}\)
    \(pdg_{4037} = \frac{- pdg_{2473}^{2} + pdg_{4770}^{2}}{2 pdg_{9140}}\)
LHS diff is pdg1943 - pdg4037 RHS diff is (pdg2473**2 - pdg5153**2)/(2*pdg9140) 5611024898:
3253234559:
5611024898:
3253234559:
work and force and energy substitute LHS of expr 1 into expr 2
  1. 3253234559; locally 5997798:
    \(x = \frac{v_2^2 - v_1^2}{2 a}\)
    \(pdg_{4037} = \frac{- pdg_{2473}^{2} + pdg_{4770}^{2}}{2 pdg_{9140}}\)
  2. 8953094349; locally 6167182:
    \(W = m a x\)
    \(pdg_{6789} = pdg_{4037} pdg_{5156} pdg_{9140}\)
  1. 9413699705; locally 6760874:
    \(W = m a \frac{v_2^2 - v_1^2}{2 a}\)
    \(pdg_{6789} = pdg_{5156} \left(- \frac{pdg_{2473}^{2}}{2} + \frac{pdg_{4770}^{2}}{2}\right)\)
valid 3253234559:
8953094349:
9413699705:
3253234559:
8953094349:
9413699705:
Physics Derivation Graph: All Steps

MESSAGES: