Physics Derivation Graph navigation Sign in

Expressions in the Physics Derivation Graph

Case-insensitive dynamic search of latex as plain text:
Case-sensitive static search of latex using regex:

expression ID Latex list of symbols name notes used in derivation
0000040490 a^2
0000999900 b/(2 a)
0001030901 \cos(x)
0001111111 (\sin(x))^2
0001209482 2 \pi
0001304952 \hbar
0001334112 W
0001921933 2 i
0002239424 2
0002338514 \vec{p}_{2}
0002342425 m/m
0002393922 x
0002424922 a
0002436656 i \hbar
0002449291 b/(2 a)
0002838490 b/(2 a)
0002919191 \sin(-x)
0002929944 1/2
0002940021 2 \pi
0003232242 t
0003413423 \cos(-x)
0003747849 -1
0003838111 2
0003919391 x
0003949052 -x
0003949921 \hbar
0003954314 dx
0003981813 -\sin(x)
0004089571 2 x
0004264724 y
0004307451 (b/(2 a))^2
0004582412 x
0004829194 2
0004831494 a
0004849392 x
0004858592 h
0004934845 x
0004948585 a
0005395034 a_{\alpha} \langle \psi_{\alpha} | \psi_{\beta} \rangle
0005626421 t
0005749291 f
0005938585 \frac{-\hbar^2}{2m}
0006466214 (\sin(x))^2
0006544644 t
0006563727 x
0006644853 c/a
0006656532 e
0007471778 2(\sin(x))^2
0007563791 i
0007636749 x
0007894942 (\sin(x))^2
0008837284 T
0008842811 \cos(2 x)
0009458842 \psi(x)
0009484724 \frac{n \pi}{W}x
0009485857 a^2\frac{2}{W}
0009485858 \frac{2n\pi}{W}
0009492929 v du
0009587738 \psi
0009877781 y
0203024440 1 = \int_0^W a \sin\left(\frac{n \pi}{W} x\right) \psi(x)^* dx
0404050504 \lambda = \frac{v}{f}
0439492440 \frac{1}{a^2} = \frac{1}{2}W - \frac{1}{2}\left. \frac{W}{2n\pi}\sin\left(\frac{2n\pi}{W} x\right) \right|_0^W evaluating-definite-integrals-for.html
0934990943 k = \frac{2 \pi}{v T}
0948572140 \int \cos(a x) dx = \frac{1}{a}\sin(a x)
1010393913 \langle \psi| \hat{A}^+ |\psi \rangle = \langle a \rangle^* stats.html
1010393944 x = \langle\psi_{\alpha}| a_{\beta} |\psi_{\beta} \rangle
1010923823 k W = n \pi
1020010291 0 = a \sin(k W)
1020394900 p = h/\lambda
1020394902 E = h f
1020854560 I = (A + B)(A + B)^*
1025759423 y
1029039903 p = m v
1029039904 p^2 = m^2 v^2
1036530438 d_2
1038566242 \sinh x = \frac{\exp(x) - \exp(-x)}{2}
1085150613 C_V = \left(\frac{\partial U}{\partial T}\right)_V definition of heat capacity at constant volume
1087417579 0 = - \frac{1}{2} g t_f^2 + v_0 t_f \sin(\theta)
1092872200 KE_1
1100332145 R
1114820451 W_{\rm by\ system} = \Delta KE Work is change in energy
1128605625 {\rm sech}^2\ x + \tanh^2(x) = \frac{4}{\left(\exp(x)+\exp(-x)\right)^2} + \frac{\left(\exp(x)-\exp(-x)\right)^2}{\left(\exp(x)+\exp(-x)\right)^2}
1132941271 m_{\rm Earth} = \frac{(9.80665 m/s^2) (6.3781*10^6 m)^2}{6.67430*10^{-11}m^3 kg^{-1} s^{-2}}
1143343287 G \frac{m_{\rm Earth}}{r_{\rm Earth}} = \frac{1}{2} v_{\rm escape}^2
1158485859 \frac{-\hbar^2}{2m} \nabla^2 = {\cal H}
1166310428 0 dt = d v_x
1172039918 I_{\rm coherent} = 4 |A|^2
1190768176 \kappa_T = \frac{-nRT}{V} \left( \frac{ \partial }{\partial P}\left(\frac{1}{P}\right) \right)_T
1191796961 \frac{1}{2} g t_f = v_0 \sin(\theta)
1193980495 m_{\rm Earth}
1201689765 x'^2 + y'^2 + z'^2 = c^2 t'^2 describes a spherical wavefront for an observer in a moving frame of reference
1202310110 \frac{1}{a^2} = \int_0^W \frac{1}{2} dx - \frac{1}{2} \int_0^W \cos\left(2\frac{n \pi}{W}x\right) dx
1202312210 \frac{1}{a^2} = \frac{1}{2}W - \frac{1}{2} \int_0^W \cos\left(2\frac{n \pi}{W}x\right) dx
1203938249 a_{\beta} \langle \psi_{\alpha} | \psi_{\beta} \rangle = a_{\alpha} \langle \psi_{\alpha} | \psi_{\beta} \rangle
1238593037 c
1248277773 \cos(2 x) = 1 - 2 (\sin(x))^2
1258245373 E
1259826355 d = (v - a t) t + \frac{1}{2} a t^2
1265150401 d = \frac{2 v_0 + a t}{2} t
1268845856 [A_{\rm adsorption}]
1277713901 d
1292735067 F_{gravitational} = G \frac{m_1 m_2}{r^2}
1293913110 0 = b
1293923844 \lambda = v T
1306360899 x = v_{0, x} t + x_0
1310571337 \theta_{\rm refracted} = 90^{\circ} - \theta_{\rm Brewster}
1311403394 \alpha = \frac{1}{V} \frac{nR}{P} \left( \frac{\partial T}{\partial T} \right)_P
1314464131 \vec{ \nabla} \times \frac{\partial \vec{H}}{\partial t} = \epsilon_0 \frac{\partial^2 \vec{E}}{\partial t^2}
1314864131 \vec{ \nabla} \times \vec{H} = \epsilon_0 \frac{\partial }{\partial t}\vec{E}
1323602089 I_1
1330874553 v_{\rm escape} = \sqrt{2 G \frac{m_{\rm Earth}}{r_{\rm Earth}}}
1333474099 F_{\rm centripetal}
1357848476 A = |A| \exp(i \theta)
1377431959 R
1395858355 x = \langle \psi_{\alpha}| a_{\alpha} |\psi_{\beta}\rangle
1405465835 y = - \frac{1}{2} g t^2 + v_{0, y} t + y_0
1413137236 m_1
1439089569 v_{0, x}
1451839362 t
1457415749 \frac{1}{R_{\rm total}} = \frac{1}{R_1} + \frac{1}{R_2} total resistance for two resistors in parallel
1484794622 R_2
1511199318 Z
1512581563 x
1525861537 I = |A|^2 + |B|^2 + A B^* + B A^*
1528310784 \gamma = \frac{1}{\sqrt{1-\frac{v^2}{c^2}}}
1541916015 \theta = \frac{\pi}{4}
1552869972 x_1
1556389363 E_{\rm Rydberg} = \frac{ m_e e^4 }{ 32 \pi^2 \epsilon_0^2 \hbar^2} the bonding energy in condensed phases is given by the Rydberg energy on the order of several e
1559688463 \left(\frac{T_{\rm geostationary\ orbit}^2 G m_{\rm Earth}}{4 \pi^2}\right)^{1/3} = r_{\rm geostationary\ orbit}
1571582377 F_{gravitational} \propto \frac{1}{r^2}
1586866563 \left( \gamma^2 - c^2 \gamma^2 \left( \frac{1-\gamma^2}{\gamma^2} \right)^2 \frac{1}{v^2} \right) x^2 + y^2 + z^2 + \left( -\gamma^2 2 x v t - c^2 \gamma^2 2 t \left( \frac{1-\gamma^2}{\gamma^2} \right) \frac{x}{v} \right) = t^2 \left( c^2 \gamma^2 - \gamma^2 v^2 \right)
1590774089 dW = F dx
1608399874 V_2
1614343171 dt
1616666229 v_{\rm final}
1635147226 m_2
1636453295 \vec{ \nabla} \times \vec{ \nabla} \times \vec{E} = - \nabla^2 \vec{E}
1638282134 \vec{p}_{\rm before} = \vec{p}_{\rm after}
1639827492 - c^2 \frac{(1-\gamma^2)}{v^2 \gamma^2} = 1
1648958381 \nabla^2 \psi \left( \vec{r},t \right) = \frac{i}{\hbar} \vec{p} \cdot \left( \vec{ \nabla} \psi( \vec{r},t) \right) representing-laplace-operator-nabla-in.html
1650441634 y_0 = 0 define coordinate system such that initial height is at origin
1676472948 0 = v_x - v_{0, x}
1702349646 -g dt = d v_y
1716984328 i x
1742775076 Z
1772416655 \frac{E_2 - E_1}{t} = v F - F v
1772973171 -\frac{k}{m} x = -A \omega^2 \cos(\omega t)
1784114349 \sqrt{\frac{k}{m}} = \omega
1809909100 \frac{E_2 - E_1}{t} = 0
1811867899 T^2 = \frac{d_1+d_2}{d_1+d_2} d_2 4 \pi^2 \frac{r^2}{G m_1}
1815398659 U = Q + W
1819663717 a_x = \frac{d}{dt} v_x
1823570358 C
1840080113 KE_2 = 0 object is not moving at $x=\infty$
1848400430 F \propto m
1857710291 0 = a \sin(n \pi)
1858578388 \nabla^2 E( \vec{r})\exp(i \omega t) = - \omega^2 \mu_0 \epsilon_0 E( \vec{r})\exp(i \omega t) representing-laplace-operator-nabla-in.html
1858772113 k = \frac{n \pi}{W}
1888494137 -\sqrt{\frac{k}{m}} = \omega
1894894315 Z
1916173354 -\gamma^2 v^2 + c^2 \gamma^2 = c^2
1928085940 Z^* = |Z| \exp( -i \theta )
1931103031 \frac{k}{m} = \omega^2
1934748140 \int |\psi(x)|^2 dx = 1
1935543849 \gamma^2 x^2 - \gamma^2 2 x v t + \gamma^2 v^2 t^2 + y^2 + z^2 = c^2 \gamma^2 \left(\frac{1-\gamma^2}{\gamma^2}\right)\frac{x^2}{\gamma^2} + c^2 \gamma^2 2 t \left(\frac{1-\gamma^2}{\gamma^2}\right)\frac{x}{\gamma} + c^2 \gamma^2 t^2
1945487024 p_A [S]
1963253044 v_{0, x} dt = dx
1967582749 t = \frac{v - v_0}{a}
1974334644 \frac{x (1 - \gamma^2 )}{\gamma v} + \frac{\gamma^2 v t}{\gamma v} = t'
1977955751 -g = \frac{d}{dt} v_y
1994296484 v_{\rm satellite}^2 = G \frac{m_{\rm Earth}}{r}
2005061870 v(r) = \sqrt{\frac{2 G m_2}{r}}
2016063530 t
2029293929 \nabla^2 E( \vec{r})\exp(i \omega t) = \mu_0 \epsilon_0 \frac{\partial^2}{\partial t^2} E( \vec{r})\exp(i \omega t) representing-laplace-operator-nabla-in.html
2042298788 0 = -G \frac{m_{\rm Earth} m}{r_{\rm Earth}} + \frac{1}{2} m v_{\rm escape}^2
2051901211 \frac{V}{R_1} = I_1
2061086175 W_{\rm to\ system} = -G m_1 m_2 \left(\frac{-1}{r} - \frac{-1}{\infty}\right)
2064205392 A
2076171250 -\gamma^2 2 x v t - c^2 \gamma^2 2 t \left( \frac{1-\gamma^2}{\gamma^2} \right) \frac{x}{v} = 0
2081689540 t
2086924031 0 = - \frac{1}{2} g t_f + v_0 \sin(\theta)
2091584724 g_{\rm Earth}
2096918413 x = \gamma ( \gamma x - \gamma v t + v t' )
2103023049 \sin(x) = \frac{1}{2i}\left(\exp(i x)-\exp(-i x) \right)
2113211456 f = 1/T
2114570475 m_{\rm satellite}
2114909846 \theta_A = \frac{[A_{\rm adsorption}]}{[S_0]}
2121790783 \tanh^2(x) = \frac{ \left(\exp(x)-\exp(-x)\right)^2}{\left(\exp(x)+\exp(-x)\right)^2}
2123139121 -\exp(-i x) = -\cos(x)+i \sin(x)
2131616531 T f = 1
2135482543 m
2148049269 -\frac{k}{m} A \cos(\omega t) = -A \omega^2 \cos(\omega t)
2168306601 [S_0] = \left(\frac{k_{\rm desorption}}{k_{\rm adsorption}} \frac{1}{p_A} + 1\right)[A_{\rm adsorption}]
2186083170 \frac{KE_2 - KE_1}{t} = v F
2217103163 \frac{m_1 d_1}{d_2} = m_2
2226340358 \gamma v
2232825726 g_{\rm Earth}
2236639474 (A + B)(A + B)^* = |A + B|^2
2242144313 a
2257410739 \left(\frac{\partial U}{\partial T}\right)_p = C_V \left(\frac{\partial T}{\partial T}\right)_p + \pi_T V \alpha
2258485859 {\cal H} \psi \left( \vec{r},t \right) = i \hbar \frac{\partial}{\partial t} \psi( \vec{r},t)
2267521164 PE_2 = 0 object goes to $\infty$ away from gravitational source
2271186630 V = I_{\rm total} R_{\rm total}
2293352649 \theta - \phi
2297105551 d = v_0 \frac{2 v_0 \sin(\theta)}{g} \cos(\theta)
2308660627 G \frac{m_{\rm Earth}}{r_{\rm Earth}^2} = g_{\rm Earth}
2334518266 m a = -k x
2344320475 E_2
2346150725 r
2346952973 m
2366691988 \int 0 dt = \int d v_x
2378095808 x_f = x_0 + d
2394240499 x = a_{\beta} \langle \psi_{\alpha} | \psi_{\beta} \rangle
2394853829 \exp(-i x) = \cos(-x)+i \sin(-x)
2394935831 ( a_{\beta} - a_{\alpha} ) \langle \psi_{\alpha} | \psi_{\beta} \rangle = 0
2394935835 \left(\langle\psi| \hat{A} |\psi \rangle \right)^+ = \left(\langle a \rangle\right)^+
2395958385 \nabla^2 \psi \left( \vec{r},t \right) = \frac{-p^2}{\hbar} \psi( \vec{r},t) representing-laplace-operator-nabla-in.html
2396787389 r_{\rm Earth}
2397692197 a^3
2403773761 t
2404934990 \langle x^2\rangle -2\langle x \rangle\langle x \rangle+\langle x \rangle^2 = \langle x^2 \rangle-\langle x \rangle^2
2405307372 \sin(2 x) = 2 \sin(x) \cos(x)
2417941373 - c^2 \gamma^2 \frac{(1-\gamma^2)^2}{v^2 \gamma^4} = 1 - \gamma^2
2431507955 PE_2 = -F x_2
2461349007 - \frac{1}{2} g t^2 + v_{0, y} t + y_0 = y
2472653783 \alpha = \frac{1}{T}
2484824786 F = m g
2494533900 \langle x^2\rangle -\langle x \rangle^2 = \langle x^2 \rangle-\langle x \rangle^2
2501591100 \exp(i \pi) + 1 = 0
2503972039 0 = KE_{\rm escape} + PE_{\rm Earth\ surface}
2510804451 2/g
2519058903 \sin(2 \theta) = 2 \sin(\theta) \cos(\theta)
2542420160 c^2 \gamma^2 - v^2 \gamma^2 = c^2
2575937347 n_1 \sin( \theta_{\rm Brewster} ) = n_2 \sin( \theta_{\rm refracted} )
2613006036 \frac{PV}{T} = nR
2617541067 \left(\frac{T_{\rm orbit}^2 G m_{\rm Earth}}{4 \pi^2}\right)^{1/3} = r
2648958382 \nabla^2 \psi \left( \vec{r},t \right) = \frac{i}{\hbar} \vec{p} \cdot \left( \frac{i}{\hbar} \vec{p} \psi( \vec{r},t) \right)
2660368546 r
2674546234 m_{\rm Earth}
2685587762 \frac{r_{\rm Earth}^2}{G}
2698469612 V
2700934933 2 \cos(x) = \left( \exp(i (\theta - \phi)) + \exp(-i (\theta - \phi)) \right)
2715678478 I R_{\rm total} = I R_1 + I R_2
2719691582 |A| = |B| in a loop
2741489181 a_y = -g
2750380042 v_{\rm escape} = -\sqrt{2 G \frac{m_{\rm Earth}}{r_{\rm Earth}}}
2754264786 2
2762326680 \cosh^2 x - \sinh^2 x = \frac{1}{4}\left( \exp(2x)+1+1+\exp(-2x) - \left(\exp(2x)-1-1+\exp(-2x)\right) \right)
2764966428 m_2
2768857871 \frac{\sin( \theta_{\rm Brewster} )}{\cos( \theta_{\rm Brewster} )} = \frac{n_2}{n_1}
2770069250 \frac{E_2 - E_1}{t} = \frac{(KE_2 - KE_1)}{t} + \frac{(PE_2 - PE_1)}{t}
2773628333 \theta_1
2809345867 \frac{V}{R_{\rm total}} = I_{\rm total}
2848934890 \langle a \rangle^* = \langle a \rangle
2857430695 a = \frac{v_2 - v_1}{t} acceleration
2858549874 - \frac{1}{2} g t^2 + v_{0, y} t = y - y_0
2867848403 I
2883079365 r_{\rm Schwarzschild} c^2 = 2 G m
2897612567 v = \alpha c \sqrt{ \frac{m_e}{A m_p} }
2902772962 \tanh(x) = \frac{\frac{1}{2}\left( \exp(x)-\exp(-x) \right)}{\cosh(x)}
2906548078 T^2 = \frac{r}{d_1+d_2} d_2 4 \pi^2 \frac{r^2}{G m_1}
2907404069 W_{\rm by\ system} = W_{\rm to\ system}
2924222857 v_{\rm initial} = v(r=\infty)
2944838499 \psi(x) = a \sin(\frac{n \pi}{W} x)
2957211007 m^3 kg^{-1} s^{-2}
2977457786 2 G \frac{m_{\rm Earth}}{r_{\rm Earth}} = v_{\rm escape}^2
2983053062 x = \gamma (x' + v t')
2998709778 v_{\rm initial} = 0
2999795755 c^2 \gamma^2 = v^2 \gamma^2 + c^2
3004158505 \frac{T^2}{r} F_{gravitational} = \left( \frac{4 \pi^2 m r}{T^2} \right)\frac{T^2}{r}
3031116098 R_2
3041762466 i  
3046191961 v_{\rm Earth\ orbit} = \frac{C_{\rm Earth\ orbit}}{t_{\rm Earth\ orbit}}
3060393541 I_{\rm incoherent} = 2|A|^2
3061811650 n_1 \sin( \theta_{\rm Brewster} ) = n_2 \cos( \theta_{\rm Brewster} )
3080027960 v_{\rm Earth\ orbit} = \frac{2 \pi r_{\rm Earth\ orbit}}{t_{\rm Earth\ orbit}}
3085575328 I = |A|^2 + |B|^2 + |A| |B| \exp(i (\theta - \phi)) + |A| |B| \exp(-i (\theta - \phi))
3088463019 m_2
3105350101 v_1
3121234211 \frac{k}{2\pi} = \lambda
3121234212 p = \frac{h k}{2\pi}
3121513111 k = \frac{2 \pi}{\lambda}
3131111133 T = 1 / f
3131211131 \omega = 2 \pi f
3132131132 \omega = \frac{2\pi}{T}
3147472131 \frac{\omega}{2 \pi} = f
3166466250 m_1
3169580383 \vec{a} = \frac{d\vec{v}}{dt} acceleration is the change in speed over a duration
3176662571 F_{\rm centripetal} = F_{\rm gravity} applicable to any satellite orbit
3182633789 \gamma^2 - c^2 \gamma^2 \frac{(1-\gamma^2)^2}{v^2 \gamma^4} = 1
3182907803 x_0
3183197515 v_1
3214170322 v(r=\infty) = 0
3219318145 \frac{365 {\rm days}}{1 {\rm year}} \frac{24 {\rm hours}}{1 {\rm day}} \frac{60 {\rm minutes}}{1 {\rm hour}} \frac{60 {\rm seconds}}{1 {\rm minute}}
3236313290 d
3246378279 m
3253234559 x = \frac{v_2^2 - v_1^2}{2 a}
3268645065 x
3270039798 2
3273630811 x
3274176452 v_{\rm initial}
3274926090 t = \frac{x - x_0}{v_{0, x}}
3285732911 (\cos(x))^2 = 1-(\sin(x))^2
3291685884 E = \frac{ m_e e^4 }{ 32 \pi^2 \epsilon_0^2 \hbar^2}
3331824625 \exp(i \pi) = -1
3342155559 m
3350802342 KE_{\rm initial}
3350830826 Z Z^* = |Z|^2
3353418803 x
3360172339 W = KE_2 - KE_1
3364286646 m_{\rm Earth} = 5.972*10^{24} kg
3366703541 a = \frac{v - v_0}{t} acceleration is the average change in speed over a duration
3398368564 F
3411994811 v_{\rm average} = \frac{d}{t}
3412946408 v^2 \gamma^2
3417126140 \tan( \theta_{\rm Brewster} ) = \frac{ n_2 }{ n_1 }
3426941928 x = \gamma ( \gamma (x - v t) + v t' )
3433441359 V
3448601530 \frac{T^2}{r}
3462972452 v = v_0 + a t
3464107376 \alpha = \frac{1}{V} \left( \frac{\partial V}{\partial T} \right)_p definition of expansion coefficient
3470587782 \sin(x) \cos(x) = \frac{1}{2i}\left(\exp(i x)-\exp(-i x) \right) \frac{1}{2}\left(\exp(i x)+\exp(-i x) \right)
3472836147 r_{\rm Earth\ orbit} = 1.496\ 10^8 {\rm km}
3485125659 x_f = v_0 t_f \cos(\theta) + x_0
3485475729 \nabla^2 E( \vec{r}) = - \frac{\omega^2}{c^2} E( \vec{r}) representing-laplace-operator-nabla-in.html
3486213448 m_{\rm satellite}
3488423948 k_{\rm adsorption} p_A [S] = k_{\rm desorption} [A_{\rm adsorption}]
3495403335 x
3497828859 V = \frac{n R T}{P}
3507029294 k_{\rm adsorption} p_A [S] = r_{\rm desorption}
3512166162 W = F x
3531380618 v(r)
3547519267 S = k_{\rm Boltzmann} \ln \Omega assumes equally probable microstates
3566149658 W_{\rm to\ system} = \int_{\infty}^r \frac{-G m_1 m_2}{x^2} dx
3585845894 \langle \left(x-\langle x \rangle\right)^2 \rangle = \langle x^2 \rangle-\langle x \rangle^2
3591237106 \frac{E_2 - E_1}{t} = \frac{(KE_2 - KE_1)}{t} - F v
3594626260 F_{\rm gravity}
3599953931 [S_0] = [S] + [A_{\rm adsorption}]
3605073197 \kappa_T = \frac{-nRT}{V} \left( \frac{-1}{P^2}\right)
3607070319 d = \frac{v_0^2}{g} \sin\left(2 \frac{\pi}{4}\right)
3614055652 v = \frac{2 \pi r}{T_{\rm orbit}}
3634715785 m
3649797559 F_{\rm centripetal} = m_2 d_2 \omega^2
3650370389 \frac{T^2}{r} F_{gravitational} = 4 \pi^2 m
3650814381 F_{gravitational} \propto \frac{m_1 m_2}{r^2}
3652511721 v
3660957533 \cos(x) = \frac{1}{2} \left( \exp(i (\theta - \phi)) + \exp(-i (\theta - \phi)) \right)
3663007361 2
3676159007 v_{0, x} \int dt = \int dx
3685779219 \sqrt{f} \approx 2
3722461713 t
3723096423 6.3781*10^6
3731774096 KE
3736177473 r_{\rm adsorption} = k_{\rm adsorption} p_A [S]
3749492596 E
3781109867 T^2 = \frac{r^3 4 \pi^2}{(d_1+d_2) \frac{m_1}{d_2}G}
3806977900 E_2 - E_1 = 0
3809726424 PE
3829492824 \frac{1}{2}\left(\exp(i x)+\exp(-i x) \right) = \cos(x)
3846041519 PE_{\rm Earth\ surface} = -G \frac{m_{\rm Earth} m}{r_{\rm Earth}}
3846345263 T_{\rm orbit}
3868998312 {\rm sech}^2\ x = \frac{4}{\left(\exp(x)+\exp(-x)\right)^2}
3876446703 m
3896798826 m_2 d_2 \omega^2 = G \frac{m_1 m_2}{r^2}
3906710072 G \frac{m_{\rm Earth}}{r} = \frac{4 \pi^2 r^2}{T_{\rm orbit}^2}
3911081515 -1
3920616792 T_{\rm geostationary orbit} = 24\ {\rm hours} this applies for geostationary orbits
3921072591 m_1
3924948349 a_{\beta} \langle \psi_{\alpha} | \psi_{\beta} \rangle - a_{\alpha} \langle \psi_{\alpha} | \psi_{\beta} \rangle = 0
3935058307 v = \sqrt{ \frac{m_e}{m} \frac{e^4}{32 \pi^2 \epsilon_0^2 \hbar^2} }
3939572542 KE_{\rm final}
3942849294 \exp(i x)-\exp(-i x) = 2 i \sin(x)
3943939590 x = a_{\alpha} \langle \psi_{\alpha}| \psi_{\beta}\rangle
3947269979 \vec{ \nabla} \times \vec{ \nabla} \times \vec{E} = -\mu_0 \epsilon_0 \frac{\partial^2 \vec{E}}{\partial t^2}
3948571256 \frac{\partial}{\partial t} \psi( \vec{r},t) = \frac{-i}{\hbar}E \psi( \vec{r},t)
3948574224 \psi( \vec{r},t) = \psi_0 \exp\left(i\left( \vec{k}\cdot\vec{r} - \omega t \right) \right)
3948574226 \psi( \vec{r},t) = \psi_0 \exp\left(i\left(\frac{ \vec{p}\cdot\vec{r}}{\hbar} - \omega t \right) \right)
3948574228 \psi( \vec{r},t) = \psi_0 \exp\left(i\left(\frac{ \vec{p}\cdot\vec{r}}{\hbar} - \frac{E t}{\hbar} \right) \right)
3948574230 \psi( \vec{r},t) = \psi_0 \exp\left(\frac{i}{\hbar}\left( \vec{p}\cdot\vec{r} - E t \right) \right)
3948574233 \frac{\partial}{\partial t} \psi( \vec{r},t) = \psi_0 \frac{\partial}{\partial t}\exp\left(i\left(\frac{ \vec{p}\cdot\vec{r}}{\hbar} - \frac{E t}{\hbar} \right) \right)
3951205425 \vec{p}_{\rm after} = \vec{p}_{1}
3967985562 2
4057686137 C
4072200527 \frac{m_{\rm satellite} v_{\rm satellite}^2}{r} = G \frac{m_{\rm Earth} m_{\rm satellite}}{r^2}
4075539836 A A^* = |A|^2
4087145886 V = I R Ohm's law Ohm%27s_law
4107032818 E_{\rm Rydberg} = E
4128500715 V = I_1 R_1
4139999399 x - \gamma^2 x = - \gamma^2 v t + \gamma v t'
4147101187 KE
4147472132 E = \frac{h \omega}{2 \pi}
4153613253 m_{\rm Earth}
4158986868 a_x \hat{x} + a_y \hat{y} = \frac{d\vec{v}}{dt}
4162188238 t_f
4166155526 {\rm sech}\ x = \frac{2}{\exp(x)+\exp(-x)}
4167526462 v_{0, y}
4180845508 v_{\rm Earth\ orbit} = 29.8 \frac{{\rm km}}{{\rm sec}}
4182362050 Z = |Z| \exp( i \theta ) Z \in \mathbb{C}
4188580242 T^2 = \frac{r^3 4 \pi^2}{\left(m_1+\left(\frac{m_1}{d_2}d_1\right)\right)G}
4188639044 x
4192519596 B = |B| \exp(i \phi)
4202292449 r_{\rm Earth\ orbit}
4213426349 E_1
4218009993 x
4245712581 v = \frac{2 \pi r}{t}
4264859781 F \propto m_1
4267808354 F_{gravitational} = m \frac{v^2}{r}
4268085801 x_0 + d = v_0 t_f \cos(\theta) + x_0
4270680309 \frac{KE_2 - KE_1}{t} = \frac{1}{2} m \frac{\left( v_2^2 - v_1^2 \right)}{t}
4275004561 c^2 = 2 G \frac{m}{r_{\rm Schwarzschild}}
4287102261 x^2 + y^2 + z^2 = c^2 t^2 describes a spherical wavefront
4298359835 E = \frac{1}{2}m v^2
4298359845 E = \frac{1}{2m}m^2 v^2
4298359851 E = \frac{p^2}{2m}
4301729661 [S_0] = \frac{[A_{\rm adsorption}]}{\left( \frac{k_{\rm adsorption}}{k_{\rm desorption}} \right) p_A} + [A_{\rm adsorption}]
4303372136 E_1 = KE_1 + PE_1
4319470443 v_2
4319544433 1/3
4341171256 i \hbar \frac{\partial}{\partial t} \psi( \vec{r},t) = \frac{p^2}{2 m} \psi( \vec{r},t)
4348571256 \frac{\partial}{\partial t} \psi( \vec{r},t) = \frac{-i}{\hbar}\frac{p^2}{2 m} \psi( \vec{r},t)
4370074654 t = t_f
4393258808 F_{\rm centripetal} = m r \omega^2
4393670960 W_{\rm to\ system} = \frac{G m_1 m_2}{r}
4394958389 \vec{ \nabla}\cdot \left( \vec{ \nabla} \psi( \vec{r},t) \right) = \frac{i}{\hbar} \vec{ \nabla}\cdot\left( \vec{p} \psi( \vec{r},t) \right)
4428528271 F_{\rm{spring}} = -k x Hooke's law Hooke%27s_law
4437214608 Z
4447113478 \int dW = G m_1 m_2 \int_{ r_{\rm Earth} }^{\infty} \frac{1}{x^2} dx
4470433702 t_{\rm Earth\ orbit}
4490788873 F \propto m_2
4501377629 \tan( \theta_{\rm Brewster} ) = \frac{ \sin( \theta_{\rm Brewster} )}{\cos( \theta_{\rm Brewster} )}
4504256452 B^* = |B| \exp(-i \phi)
4522137851 PE_2
4560648264 v = \sqrt{ \frac{K + (4/3) G}{\rho} }
4580545876 d = v t - a t^2 + \frac{1}{2} a t^2
4583868070 B
4585828572 \epsilon_0 \mu_0 = \frac{1}{c^2}
4585932229 \cos(x) = \frac{1}{2}\left(\exp(i x)+\exp(-i x) \right)
4587046017 KE
4593428198 v_{\rm Earth\ orbit} = \frac{2 \pi r_{\rm Earth\ orbit}}{3.16\ 10^7 {\rm seconds}}
4598294821 \exp(2 i x) = (\cos(x))^2+2i\cos(x)\sin(x)-(\sin(x))^2
4627284246 F_{\rm centripetal} = \frac{m_{\rm satellite} v_{\rm satellite}^2}{r}
4638429483 \exp(2 i x) = (\cos(x)+ i \sin(x))(\cos(x)+ i \sin(x))
4648451961 v_2^2 - v_1^2 = (v_2 + v_1)(v_2 - v_1)
4651061153 m_2
4662369843 x' = \gamma (x - v t)
4669290568 PE_1 = -F x_1
4689334676 \theta_A = \frac{K_{\rm equilibrium}\ p_A}{1+K_{\rm equilibrium}\ p_A}
4742644828 \exp(i x)+\exp(-i x) = 2 \cos(x)
4748157455 a t = v - v_0
4755369593 x_2
4778077984 t_f = \frac{2 v_0 \sin(\theta)}{g}
4784793837 \frac{KE_2 - KE_1}{t} = m v a
4798787814 a t + v_0 = v
4800170179 F = m g_{\rm Earth}
4805233006 i \sin(i x) = \frac{1}{2}\left(\exp(x) - \exp(-x) \right)  
4811121942 W = \frac{1}{2} m v_2^2 - \frac{1}{2} m v_1^2
4820320578 F_{gravitational} = F_{centripetal}
4827492911 \cos(2 x)+(\sin(x))^2 = 1 - (\sin(x))^2
4829590294 t_f
4830221561 {\rm sech}^2\ x + \tanh^2(x) = \frac{4+\left(\exp(2x)-1-1+\exp(-2x)\right)}{\left(\exp(x)+\exp(-x)\right)^2}
4830480629 x
4838429483 \exp(2 i x) = \cos(2 x)+i \sin(2 x)
4843995999 \frac{1}{2 i}\left(\exp(i x)-\exp(-i x) \right) = \sin(x)
4857472413 1 = \int \psi(x)\psi(x)^* dx
4857475848 \frac{1}{a^2} = \frac{W}{2}
4858693811 \frac{T_{\rm orbit}^2 G m_{\rm Earth}}{4 \pi^2} = r^3
4866160902 \frac{V}{R_{\rm total}} = \frac{V}{R_1} + \frac{V}{R_2}
4872163189 \tanh(x) = \frac{\sinh(x)}{\cosh(x)}
4872970974 \frac{PE_2 - PE_1}{t} = -F v
4878728014 \sin(i x) = \frac{1}{2i}\left(\exp(-x) - \exp(x) \right)
4901237716 1
4923339482 i x = \log(y)
4928007622 KE_1 = \frac{1}{2} m v_1^2
4928239482 \log(y) = i x
4935235303 x
4938429482 \exp(-i x) = \cos(x)+i \sin(-x)
4938429483 \exp(i x) = \cos(x)+i \sin(x)
4938429484 \exp(-i x) = \cos(x)-i \sin(x)
4939880586 V_{\rm total} = I R_{\rm total}
4943571230 \vec{ \nabla} \psi( \vec{r},t) = \frac{i}{\hbar} \vec{p} \psi_0 \exp\left(\frac{i}{\hbar}\left( \vec{p}\cdot\vec{r} - E t \right) \right)
4947831649 \frac{1}{2} m_1 v_{\rm final}^2 = W_{\rm to\ system}
4948763856 2 a d + v_0^2 = v^2
4948934890 \langle \psi| \hat{A} |\psi \rangle = \langle a \rangle^*
4949359835 \langle x^2\rangle -2\langle x^2 \rangle+\langle x \rangle^2 = \langle x^2 \rangle-\langle x \rangle^2
4961662865 x
4968680693 \tan( x ) = \frac{ \sin( x )}{\cos( x )}
4985825552 \nabla^2 E( \vec{r})\exp(i \omega t) = i \omega \mu_0 \epsilon_0 \frac{\partial}{\partial t} E( \vec{r})\exp(i \omega t) representing-laplace-operator-nabla-in.html
5002539602 dU = C_V dT + \pi_T dV
5011888122 v_2
5021965469 KE
5050429607 G \frac{m_{\rm Earth} m}{r_{\rm Earth}}
5074423401 V
5075406409 PE
5085809757 \frac{k_{\rm adsorption}}{k_{\rm desorption}} = \frac{[A_{\rm adsorption}]}{p_A [S]}
5089196493 F
5125940051 I = |A|^2 + B B^* + A B^* + B A^*
5128670694 m_1 d_1 = m_2 d_2
5136652623 E = KE + PE mechanical energy is the sum of the potential plus kinetic energies
5144263777 v^2 = v_0^2 + 2 a \left( v_0 t +\frac{1}{2} a t^2 \right)
5148266645 t' = \frac{\gamma x (1 - \gamma^2 )}{\gamma^2 v} + \gamma t
5177311762 v = \frac{2 \pi r}{T}
5181421075 R_1
5194141542 x_f
5208737840 T_{\rm geostationary\ orbit}
5239755033 v_1
5258419993 R_1
5284610349 \gamma^2
5323719091 i \sinh x = \frac{1}{2i} \left( \exp(-x) - \exp(x) \right)
5345738321 F = m a Newton's second law of motion Newton%27s_laws_of_motion#Newton's_second_law
5349669879 \tanh(x) = \frac{ \exp(x)-\exp(-x)}{\exp(x)+\exp(-x)}
5349866551 \vec{v} = v_x \hat{x} + v_y \hat{y}
5353282496 d = \frac{v_0^2}{g}
5359471792 \frac{m_{\rm satellite}}{r}
5373931751 t = t_f
5379546684 y_f = - \frac{1}{2} g t_f^2 + v_0 t_f \sin(\theta) + y_0
5398681502 v
5398681503 v
5404822208 v_{\rm escape} = \sqrt{2 G \frac{m}{r}} escape velocity
5415824175 x(t) = A \cos(\omega t)
5426308937 v = \frac{d}{t}
5426418187 [A_{\rm adsorption}]
5438722682 x = v_0 t \cos(\theta) + x_0
5453995431 \arctan{ x }
5463275819 I_2
5514556106 E_2 - E_1 = (KE_2 - KE_1) + (PE_2 - PE_1)
5516739892 -1
5530148480 \vec{p}_{1}-\vec{p}_{2} = \vec{p}_{electron}
5542390646 2 a
5542528160 \int dW = F \int_0^x dx
5563580265 F_{\rm gravity} = G \frac{m_{\rm Earth} m_{\rm satellite}}{r^2}
5585739998 I
5586102077 r = d_1 + d_2
5591692598 KE_1
5596822289 W_{\rm to\ system} = -G m_1 m_2 \left(\left.\frac{-1}{x}\right|^r_{\infty}\right)
5611024898 d = \frac{1}{2 a} (v^2 - v_0^2)
5620558729 v_0
5623794884 A + B
5632428182 \cos( \theta_{\rm Brewster} )
5634116660 \pi_T = \left(\frac{\partial U}{\partial V}\right)_T definition of internal pressure at constant temperature
5646314683 m = A m_p
5658865948 T^2 = \frac{r^3 4 \pi^2}{(m_1+m_2)G}
5667870149 \theta
5669500954 v^2 \gamma^2
5684907106 \frac{1}{d_2 4 \pi^2}
5693047217 v_{\rm final} = -\sqrt{\frac{2 G m_2}{r}}
5727578862 \frac{d^2}{dx^2} \psi(x) = -k^2 \psi(x)
5732331610 W = G m_1 m_2 \left( \frac{1}{x} \bigg\rvert_{ r_{\rm Earth} }^{\infty} \right) 2022-03-25 BHP: Conversion between Latex and Sympy is incomplete
5733146966 KE_2 - KE_1 = \frac{1}{2} m \left(v_2^2 - v_1^2\right)
5733721198 d = \frac{1}{2} (v + v_0) \left( \frac{v - v_0}{a} \right)
5763749235 -c^2 + c^2 \gamma^2 = v^2 \gamma^2
5770088141 r
5775658332 2
5778176146 t
5779256336 W_{\rm by\ system} = KE_{\rm final} - KE_{\rm initial}
5781435087 g
5781981178 x^2 - y^2 = (x+y)(x-y) difference of squares Difference_of_two_squares
5787469164 1 - \gamma^2
5789289057 v = \alpha c \sqrt{ \frac{m_e}{2 m} } equation 4 in the PDF
5799753649 2
5803210729 PE_2
5832984291 (\sin(x))^2 + (\cos(x))^2 = 1
5838268428 \alpha c = \frac{1}{4 \pi \epsilon_0} \frac{e^2}{\hbar}
5846177002 t
5846639423 v_{\rm final} = \sqrt{\frac{2 G m_2}{r}}
5850144586 W_{\rm by\ system} = KE_{\rm final}
5857434758 \int a dx = a x
5866629429 {\rm sech}^2\ x + \tanh^2(x) = 1
5868688585 \frac{-\hbar^2}{2m} \nabla^2 \psi \left( \vec{r},t \right) = \frac{p^2}{2m} \psi( \vec{r},t) representing-laplace-operator-nabla-in.html
5868731041 v_0
5890617067 R
5900595848 k = \frac{\omega}{v}
5902985919 \vec{F} = G \frac{m_1 m_2}{x^2} \hat{x} Newton's law of universal gravitation
5904227750 m
5928285821 x^2 + 2 x (b/(2 a)) + (b/(2 a))^2 = (x + (b/(2 a)))^2
5928292841 x^2 + (b/a)x + (b/(2 a))^2 = -c/a + (b/(2 a))^2
5938459282 x^2 + (b/a)x = -c/a
5945893986 \frac{d^2 x}{dt^2} = -A \omega^2 \cos(\omega t)
5958392859 x^2 + (b/a)x+(c/a) = 0
5959282914 x^2 + x(b/a) + (b/(2 a))^2 = (x+(b/(2 a)))^2
5960438249 E_1
5962145508 \alpha = \frac{nR}{VP}
5978756813 W = G m_{\rm Earth} m \left( 0 - \frac{-1}{ r_{\rm Earth}} \right)
5982958248 x = -\sqrt{(b/(2 a))^2 - (c/a)}-(b/(2 a))
5982958249 x+(b/(2 a)) = -\sqrt{(b/(2 a))^2 - (c/a)}
5985371230 \vec{ \nabla} \psi( \vec{r},t) = \frac{i}{\hbar} \vec{p} \psi( \vec{r},t)
6023986360 x
6026694087 F_{centripetal} = m \frac{v^2}{r}
6031385191 \sinh^2 x = \left(\frac{\exp(x) - \exp(-x)}{2}\right)\left(\frac{\exp(x) - \exp(-x)}{2}\right)
6038673136 v
6050070428 v_{0, x}
6055078815 \left(\frac{\partial U}{\partial T}\right)_p = C_V \left(\frac{\partial T}{\partial T}\right)_p + \pi_T \left( \frac{\partial V}{\partial T} \right)_p constant pressure
6061695358 V_2 = I R_2
6083821265 v_0 \cos(\theta) = v_{0, x}
6091977310 KE_{\rm initial} = \frac{1}{2} m_1 v_{\rm initial}^2
6098638221 y_0
6131764194 W = G m_{\rm Earth} m \left( \frac{1}{x^2} \bigg\rvert_{ r_{\rm Earth} }^{\infty} \right) evaluating-definite-integrals-for.html
6134836751 v_{0, x} = v_x
6158970683 PE_1
6175547907 v_{\rm average} = \frac{v + v_0}{2}
6204539227 -g t + v_{0, y} = \frac{dy}{dt}
6238632840 r T_{\rm orbit}^2
6239815585 C_{\rm Earth\ orbit}
6240206408 I_{\rm incoherent} = |A|^2 + |B|^2
6240546932 \frac{1}{K_{equilibrium}} = \frac{k_{\rm desorption}}{k_{\rm adsorption}}
6259833695 A
6268336290 F_{gravitational} = \frac{m}{r}\left(\frac{2\pi r}{T}\right)^2
6281834543 m_1
6296166842 P
6306552185 I = (A + B)(A^* + B^*)
6346902704 1
6348260313 C_{\rm Earth\ orbit} = 2 \pi r_{\rm Earth\ orbit}
6353701615 \theta_{\rm refracted}
6383056612 KE
6397683463 V \alpha = \left( \frac{\partial V}{\partial T} \right)_p
6404535647 \cosh x = \frac{\exp(x) + \exp(-x)}{2}
6408214498 c^2
6410818363 \theta
6417359412 v_0
6421241247 d = v t - \frac{1}{2} a t^2
6450985774 n_1 \sin( \theta_1 ) = n_2 \sin( \theta_2 ) Law of Refraction eq 34-44 on page 819 in \cite{2001_HRW}
6457044853 v - a t = v_0
6457999644 \frac{[S_0]}{[A_{\rm adsorption}]} = \frac{1}{K_{\rm equilibrium}} \frac{1}{p_A} + 1
6463266449 t_f
6498985149 v_{\rm escape}
6504442697 v = \sqrt{ \frac{K}{\rho} }
6529120965 B
6529793063 I_{\rm incoherent} = |A|^2 + |A|^2
6535639720 r_{\rm Earth}
6546594355 R_{\rm total}
6554292307 t
6555185548 A^* = |A| \exp(-i \theta)
6556875579 \frac{I_{\rm coherent}}{I_{\rm incoherent}} = 2
6572039835 -g t + v_{0, y} = v_y
6599829782 v_{\rm final}
6672141531 dt
6681646197 v
6701855578 v_2
6715248283 PE = -F x potential energy Potential_energy
6729698807 v_0
6732786762 t
6742123016 \vec{p}_{electron}\cdot\vec{p}_{electron} = ( \vec{p}_{1}\cdot\vec{p}_{1})+( \vec{p}_{2}\cdot\vec{p}_{2})-2( \vec{p}_{1}\cdot\vec{p}_{2})
6749533119 PE_1
6753224061 I_{\rm total} = I_1 + I_2
6774684564 \theta = \phi for coherent waves
6783009163 r_{\rm adsorption} = r_{\rm desorption}
6785303857 C = 2 \pi r
6800170830 r_{\rm Schwarzschild} = \frac{2 G m}{c^2}
6829281943 F_{\rm centripetal} = G \frac{m_1 m_2}{r^2}
6831637424 \sin( 90^{\circ} - \theta_{\rm Brewster} ) = \cos( \theta_{\rm Brewster} )
6831694380 a = \frac{d^2 x}{dt^2}
acceleration
6838659900 KE_2
6870322215 KE_{\rm escape} = \frac{1}{2} m v_{\rm escape}^2
6885625907 \exp(i \pi) = -1 + i 0
6892595652 \frac{1}{2} m_1 v_{\rm final}^2 = \frac{G m_1 m_2}{r}
6908055431 x(t) = A \cos\left(\frac{k}{m} t\right)
6925244346 \alpha = \frac{PV}{T} \frac{1}{VP}
6935745841 F = G \frac{m_1 m_2}{x^2} Newton's law of universal gravitation Newton%27s_law_of_universal_gravitation#Modern_form
6946088325 v = \frac{C}{t}
6955192897 r_{\rm desorption} = k_{\rm desorption} [A_{\rm adsorption}]
6964468708 KE_1
6974054946 \frac{1}{2} g t_f
6976493023 x
6998364753 v_{\rm Earth\ orbit} = \frac{2 \pi \left( 1.496\ 10^8 {\rm km} \right)}{3.16\ 10^7 {\rm seconds}}
7002609475 \frac{V}{R_2} = I_2
7010294143 T_{\rm orbit}^2 G m_{\rm Earth} = 4 \pi^2 r^3
7011114072 d = \frac{(v_0 + a t) + v_0}{2} t
7049769409 2
7053449926 r_{\rm geostationary\ orbit}
7057864873 y' = y frame of reference is moving only along x direction
7083390553 t
7107090465 B B^* = |B|^2
7112613117 m_{\rm Earth} = \frac{(9.80665 m/s^2) r_{\rm Earth}^2}{6.67430*10^{-11}m^3 kg^{-1} s^{-2}}
7112646057 v_{\rm final}^2 = \frac{2 G m_2}{r}
7140470627 m
7154592211 \theta_2
7159989263 i x
7175416299 t_{\rm Earth\ orbit} = 1 {\rm year}
7191277455 R
7194432406 r_{\rm Schwarzschild}
7214442790 x
7215099603 v^2 = v_0^2 + 2 a t v_0 + a^2 t^2
7217021879 R_{\rm total} = R_1 + R_2
7233558441 d = v_0 t_f \cos(\theta)
7252338326 v_y = \frac{dy}{dt}
7263534144 c^2
7267155233 \frac{PE_2 - PE_1}{t} = -F \left( \frac{x_2 - x_1}{t} \right)
7267424860 \frac{1}{\theta_A} = \frac{1+(K_{\rm equilibrium}\ p_A)}{K_{\rm equilibrium}\ p_A}
7321695558 \theta_{\rm Brewster}
7326066466 G
7337056406 \gamma^2 x
7354529102 y = - \frac{1}{2} g \left( \frac{x - x_0}{v_{0, x}} \right)^2 + v_{0, y} \frac{x - x_0}{v_{0, x}} + y_0
7375348852 \theta_{\rm Brewster}
7376526845 \sin(\theta) = \frac{v_{0, y}}{v_0}
7391837535 \cos(\theta) = \frac{v_{0, x}}{v_0}
7410124465 R_{\rm total}
7410526982 2/m_1
7445388869 -1
7453225570 x
7455581657 v_{0, x} = \frac{dx}{dt}
7466829492 \vec{ \nabla} \cdot \vec{E} = 0
7473576008 \frac{-1}{A \cos(\omega t)}
7476820482 C
7497687256 V
7513513483 \gamma^2 (c^2 - v^2) = c^2
7517073655 [S_0] = \left(\frac{1}{K_{\rm equilibrium}} \frac{1}{p_A} + 1\right)[A_{\rm adsorption}]
7556442438 4 \pi^2
7560908617 m
7564010952 -1
7564894985 \int \cos\left(\frac{2n\pi}{W} x\right) dx = \frac{W}{2n\pi}\sin\left(\frac{2n\pi}{W} x\right)
7572664728 \cos(2 x) + 2 (\sin(x))^2 = 1
7573835180 PE_{\rm Earth\ surface} = -W the potential energy at the surface of the Earth is equal to the work needed to get it from the center of the Earth to the surface
7575738420 \left(\sin\left(\frac{n \pi}{W}x\right) \right)^2 = \frac{1-\cos\left(2\frac{n \pi}{W}x\right)}{2}
7575859295 \vec{ \nabla} \times \vec{ \nabla} \times \vec{E} = \vec{ \nabla}( \vec{ \nabla} \cdot \vec{E} - \nabla^2 \vec{E})
7575859300 \epsilon^{i,j,k} \hat{x}_i \nabla_j ( \vec{ \nabla} \times \vec{E} )_k = \vec{ \nabla}( \vec{ \nabla} \cdot \vec{E} - \nabla^2 \vec{E})
7575859302 \epsilon^{i,j,k} \epsilon_{n,j,k} \hat{x}_i \nabla_j \nabla^m E^n = \vec{ \nabla}( \vec{ \nabla} \cdot \vec{E} - \nabla^2 \vec{E})
7575859304 \epsilon^{i,j,k} \epsilon_{n,j,k} = \delta^{l}_{\ \ j} \delta^{m}_{\ \ k} - \delta^{l}_{\ \ k} \delta^{m}_{\ \ h} Covariance_and_contravariance_of_vectors
7575859306 \left( \delta^{l}_{\ \ j} \delta^{m}_{\ \ k} - \delta^{l}_{\ \ k} \delta^{m}_{\ \ h} \right) \hat{x}_i \nabla_j \nabla^m E^n = \vec{ \nabla}( \vec{ \nabla} \cdot \vec{E} - \nabla^2 \vec{E}) Covariance_and_contravariance_of_vectors
7575859308 \left( \delta^{l}_{\ \ j} \delta^{m}_{\ \ k} \hat{x}_i \nabla_j \nabla^m E^n\right)-\left( \delta^{l}_{\ \ k} \delta^{m}_{\ \ h} \hat{x}_i \nabla_j \nabla^m E^n \right) = \vec{ \nabla}( \vec{ \nabla} \cdot \vec{E} - \nabla^2 \vec{E}) Covariance_and_contravariance_of_vectors
7575859310 \hat{x}_m \nabla_n \nabla^m E^n - \hat{x}_n \nabla_m \nabla^m E^n = \vec{ \nabla}( \vec{ \nabla} \cdot \vec{E} - \nabla^2 \vec{E})
7575859312 \vec{ \nabla}( \vec{ \nabla} \cdot \vec{E} - \nabla^2 \vec{E}) = \vec{ \nabla}( \vec{ \nabla} \cdot \vec{E} - \nabla^2 \vec{E})
7587034465 \theta
7607271250 \theta
7621705408 I = |A|^2 + |B|^2 + |A| |B| \exp(-i \theta) \exp(i \phi) + |A| |B| \exp(i \theta) \exp(-i \phi)
7630953440 \frac{K_{\rm equilibrium} p_A}{K_{\rm equilibrium} p_A}
7652131521 \frac{dx}{dt} = -A \omega \sin (\omega t)
7672365885 F_{gravitational} = \frac{4 \pi^2 m r}{T^2}
7675171493 V_1 = I R_1
7676652285 KE_2 = \frac{1}{2} m v_2^2
7696214507 n_1 \sin( \theta_{\rm Brewster} ) = n_2 \sin( 90^{\circ} - \theta_{\rm Brewster} )
7701249282 v_u = \alpha c \sqrt{ \frac{m_e}{m_p} } when A = 1
7708501762 C_{\rm Earth\ orbit}
7729413831 a_x \hat{x} + a_y \hat{y} = \frac{d}{dt} \left(v_x \hat{x} + v_y \hat{y} \right)
7731226616 {\rm sech}\ x = \frac{1}{\cosh x}
7734996511 PE_2 - PE_1 = -F ( x_2 - x_1 )
7735731560 \cosh^2 x - \sinh^2 x = \frac{1}{4}\left( \exp(2x)+1+1+\exp(-2x) - \left(\exp(2x)-1-1-\exp(-2x)\right) \right)  
7735737409 \frac{KE_2 - KE_1}{t} = m v \frac{ v_2 - v_1 }{t}
7741202861 x = \gamma^2 x - \gamma^2 v t + \gamma v t'
7743841045 \gamma^2
7749253510 W = G \frac{m_{\rm Earth} m }{ r_{\rm Earth}}
7774819339 R
7798615279 I_{\rm total}
7816982139 m/s^2
7819443873 r
7826132469 \left(\frac{\partial U}{\partial T}\right)_p = C_V + \pi_T V \alpha
7837519722 v = \sqrt{f} \sqrt{\frac{E}{m}}
7844317489 I
7846240076 m_{\rm Earth} = \frac{(9.80665 m/s^2) r_{\rm Earth}^2}{G}
7857757625 n_1
7875206161 E_2 = KE_2 + PE_2
7882872592 W_{\rm to\ system} = \int_{\infty}^r \vec{F}\cdot d\vec{r}
7905984866 m_1
7906112355 \gamma^2 = \frac{c^2}{c^2 - \gamma^2}
7912578203 v
7917051060 \vec{p}_{electron} = \vec{p}_{1}-\vec{p}_{2}
7924063906 K_{equilibrium} = \frac{k_{\rm adsorption}}{k_{\rm desorption}}
7924842770 T
7928111771 \frac{1}{\theta_A} = \frac{1}{K_{\rm equilibrium} p_A} + 1
7935917166 r_{\rm Earth}
7939765107 v^2 = v_0^2 + 2 a d
7939947931 KE_2
8014566709 \gamma^2 v t
8020058613 r
8044416349 d_2
8046208134 I_{\rm coherent} = |A|^2 + |A|^2 + |A| |A| 2
8049905441 \Delta KE = KE_{\rm final} - KE_{\rm initial} change in kinetic energy
8059639673 v^2 = \frac{4 \pi^2 r^2}{T_{\rm orbit}^2}
8061701434 PE_1
8065128065 I = A A^* + B B^* + A B^* + B A^*
8066819515 v
8072682558 x_0
8090924099 v = \sqrt{ \left( f\frac{E}{a^3} \right) \frac{1}{\rho} }
8106885760 \alpha = \frac{1}{4 \pi \epsilon_0} \frac{e^2}{\hbar c} fine structure constant definition
8111389082 x
8120663858 y_f
8122039815 \frac{d_1+d_2}{d_1+d_2}
8131665171 \frac{1}{\theta_A} = \frac{[S_0]}{[A_{\rm adsorption}]}
8135396036 t
8139187332 \vec{p}_{1} = \vec{p}_{2}+\vec{p}_{electron}
8145337879 -g t dt + v_{0, y} dt = dy
8162179726 k_{\rm adsorption} p_A
8173074178 x
8198310977 0 = - \frac{1}{2} g t_f^2 + v_0 t_f \sin(\theta) + y_0
8228733125 a_y = \frac{d}{dt} v_y
8257621077 \vec{p}_{\rm before} = \vec{p}_{1}
8269198922 2 a d = v^2 - v_0^2
8283354808 I_{\rm coherent} = |A|^2 + |B|^2 + |A| |B| 2 \cos( 0 )
8311458118 \vec{p}_{\rm after} = \vec{p}_{2}+\vec{p}_{electron}
8332931442 \exp(i \pi) = \cos(\pi)+i \sin(\pi)
8357234146 KE = \frac{1}{2} m v^2 kinetic energy Kinetic_energy
8360117126 \gamma = \frac{-1}{\sqrt{1-\frac{v^2}{c^2}}} not a physically valid result in this context
8361238989 a_{centripetal} = \frac{v^2}{r}
8362338572 v_{\rm escape}
8368984890 \kappa_T = \frac{-1}{V} \left( \frac{ \partial }{\partial P}\left(\frac{nRT}{P}\right) \right)_T
8396997949 I = | A + B |^2 intensity of two waves traveling opposite directions on same path
8399484849 \langle x^2 - 2 x \langle x \rangle + \langle x \rangle^2 \rangle = \langle x^2 \rangle-\langle x \rangle^2
8405272745 W_{\rm to\ system} = -G m_1 m_2\int_{\infty}^r \frac{1}{x^2} dx
8406170337 y
8416464049 KE_{\rm escape}
8418527415 \sin(i x) = i \sinh(x)
8435841627 P V = n R T Ideal_gas_law
8460820419 v_x = \frac{dx}{dt}
8483686863 \sin(2 x) = \frac{1}{2i}\left(\exp(i 2 x)-\exp(-i 2 x) \right)
8484544728 -a k^2\sin(k x) + -b k^2\cos(k x) = -a k^2 \sin(kx) + -b k^2 \cos(k x)
8485757728 a \frac{d^2}{dx^2}\sin(kx) + b \frac{d^2}{dx^2}\cos(k x) = -a k^2 \sin(kx) + -b k^2 \cos(kx)
8485867742 \frac{2}{W} = a^2
8486706976 v_{0, x} t + x_0 = x
8489593958 d(u v) = u dv + v du
8489593960 d(u v) - v du = u dv
8489593962 u dv = d(u v) - v du
8489593964 \int u dv = u v - \int v du
8494839423 \nabla^2 \vec{E} = \mu_0 \epsilon_0 \frac{\partial^2 \vec{E}}{\partial t^2}
8495187962 \theta_{\rm Brewster} = \arctan{ \left( \frac{ n_1 }{ n_2 } \right) }
8497631728 I = |A|^2 + |B|^2 + |A| |B| 2 \cos( \theta - \phi )
8515803375 z' = z frame of reference is moving only along x direction
8532702080 \cosh^2 x = \left(\frac{\exp(x) + \exp(-x)}{2}\right)\left(\frac{\exp(x) + \exp(-x)}{2}\right)
8552710882 KE_{\rm final} = \frac{1}{2} m_1 v_{\rm final}^2
8558338742 E_2 = E_1 conservation of energy Conservation_of_energy
8563535636 \cosh^2 x - \sinh^2 x = \left(\frac{\exp(x) + \exp(-x)}{2}\right)\left(\frac{\exp(x) + \exp(-x)}{2}\right) - \left(\frac{\exp(x) - \exp(-x)}{2}\right)\left(\frac{\exp(x) - \exp(-x)}{2}\right)
8571466509 c^2 - \gamma^2
8572657110 1 = \int |\psi(x)|^2 dx
8572852424 \vec{E} = E( \vec{r},t)
8575746378 \int \frac{1}{2} dx = \frac{1}{2} x
8575748999 \frac{d^2}{dx^2} \left(a \sin(k x) + b \cos(k x) \right) = -k^2 \left(a \sin(kx) + b \cos(kx) \right)
8576785890 1 = \int_0^W a^2 \frac{1-\cos\left(2\frac{n \pi}{W}x\right)}{2} dx
8577275751 0 = a \sin(0) + b\cos(0)
8582885111 \psi(x) = a \sin(kx) + b \cos(kx)
8582954722 x^2 + 2 x h + h^2 = (x + h)^2
8584698994 -g \int dt = \int d v_y
8588429722 \sin( 90^{\circ} - x ) = \cos( x )
8602221482 \langle \cos(\theta - \phi) \rangle = 0 incoherent light source
8602512487 \vec{a} = a_x \hat{x} + a_y \hat{y} decompose acceleration into two components
8604483515 dW = G \frac{m_1 m_2}{x^2} dx
8607458157 dt
8642992037 2
8651044341 \cos(i x) = \frac{1}{2} \left( \exp(-x) + \exp(x) \right)
8655294002 a = -\frac{k}{m}x
8661803554 F = G \frac{m_{\rm Earth} m}{r_{\rm Earth}^2}
8688588981 a^3 \rho = m
8699789241 2 \sin(x) \cos(x) = \frac{1}{2 i} \left( \exp(i 2 x) - 1 + 1 - \exp(-i 2 x) \right)
8706092970 d = \left(\frac{v + v_0}{2}\right)t
8710504862 A
8717193282 dt
8721295221 t_{\rm Earth\ orbit} = 3.16 10^7 {\rm seconds}
8730201316 \frac{\gamma x (1 - \gamma^2 )}{\gamma^2 v} + \gamma t = t' first term was multiplied by \gamma/\gamma
8747785338 \cos(i x) = \cosh(x)
8750379055 0 = \frac{d}{dt} v_x
8808860551 -g \int t dt + v_{0, y} \int dt = \int dy
8849289982 \psi(x)^* = a \sin(\frac{n \pi}{W} x)
8854422847 dT
8857931498 c
8865085668 t
8871333437 PE_{\rm Earth\ surface}
8880467139 2
8889444440 1 = \int_0^W a^2 \left(\sin\left(\frac{n \pi}{W} x\right) \right)^2 dx
8908736791 \rho = \frac{m}{a^3} geometry
8916428651 m
8922441655 d = \frac{v_0^2}{g} \sin(2 \theta)
8945218208 \theta_{\rm Brewster} + \theta_{\rm refracted} = 90^{\circ} based on figure 34-27 on page 824 in \cite{2001_HRW}
8946383937 v_{\rm escape}^2 = 2 G \frac{m}{r}
8949329361 v_0 \sin(\theta) = v_{0, y}
8953094349 W = m a x
8960645192 KE_2 + PE_2 = KE_1 + PE_1
8991236357 \frac{d^2 x}{dt^2} = -\frac{k}{m} x
9025853427 \theta_{\rm Brewster}
9029795851 \theta_{\rm Brewster}
9031609275 x (1 - \gamma^2 ) = - \gamma^2 v t + \gamma v t'
9040079362 f
9053099840 I
9059289981 \psi(x) = a \sin(k x)
9063568209 V_{\rm total} = V_1 + V_2
9070394000 m_2 d_2 \frac{4 \pi^2}{T^2} = G \frac{m_1 m_2}{r^2}
9070454719 v_0^2
9072369552 m_{\rm Earth}
9081138616 W_{\rm by\ system} = \frac{1}{2} m_1 v_{\rm final}^2
9110536742 2 x
9112191201 y_f = 0
9152823411 \frac{1}{T^2} = \frac{1}{d_2 4 \pi^2} G \frac{m_1}{r^2}
9170048197 T^2 = d_2 4 \pi^2 \frac{r^2}{G m_1}
9174439158 R_1
9180861128 2 \sin(x) \cos(x) = \frac{1}{2 i} \left( \exp(i 2 x) - \exp(-i 2 x) \right)
9191880568 Z Z^* = |Z| |Z| \exp( -i \theta ) \exp( i \theta )
9226945488 F = \frac{m v^2}{r} Centripetal force Centripetal_force
9243879541 V = I_2 R_2
9262596735 d = 2 \pi r
9285928292 ax^2 + bx + c = 0
9291999979 \vec{ \nabla} \times \vec{ \nabla} \times \vec{E} = -\mu_0\vec{ \nabla} \times \frac{\partial \vec{H}}{\partial t}
9294858532 \hat{A}^+ = \hat{A}
9305761407 v
9337785146 v = \frac{x_2 - x_1}{t} average velocity
9341391925 \vec{v}_0 = v_{0, x} \hat{x} + v_{0, y} \hat{y}
9346215480 T_{\rm orbit}
9350663581 \pi
9350720370 m
9355039511 g
9356924046 \frac{KE_2 - KE_1}{t} = m \frac{v_2 + v_1}{2} \frac{ v_2 - v_1 }{t}
9370882921 KE_{\rm escape}
9376481176 K = f \frac{E}{a^3} proportionality coefficient fvaries in the range 1-4 for a majority of elemental solids
9385938295 (x+(b/(2 a)))^2 = -(c/a) + (b/(2 a))^2
9393939991 \psi(x) = -\sqrt{\frac{2}{W}} \sin\left(\frac{n \pi}{W} x\right)
9393939992 \psi(x) = \sqrt{\frac{2}{W}} \sin\left(\frac{n \pi}{W} x\right)
9394939493 \nabla^2 E( \vec{r},t) = \mu_0 \epsilon_0 \frac{\partial^2}{\partial t^2} E( \vec{r},t)
9397152918 v = \frac{v_1 + v_2}{2} average velocity
9407192813 G \frac{m_{\rm Earth} m}{r_{\rm Earth}^2} = m g_{\rm Earth}
9409776983 x (1 - \gamma^2 ) + \gamma^2 v t = \gamma v t'
9412953728 v_{\rm escape}^2 = 2 G \frac{m_{\rm Earth}}{r_{\rm Earth}}
9413609246 \cosh^2 x - \sinh^2 x = 1
9413699705 W = m a \frac{v_2^2 - v_1^2}{2 a}
9429829482 \frac{d}{dx} y = -\sin(x) + i\cos(x)
9440616166 m_{\rm Earth} = \frac{g_{\rm Earth} r_{\rm Earth}^2}{G}
9482113948 \frac{dy}{y} = i dx
9482438243 (\cos(x))^2 = \cos(2 x) + (\sin(x))^2
9482923849 \exp(i x) = y
9482928242 \cos(2 x) = (\cos(x))^2 - (\sin(x))^2
9482928243 \cos(2 x) + (\sin(x))^2 = (\cos(x))^2
9482943948 \log(y) = i dx
9482984922 \frac{d}{dx} y = (i\sin(x) + \cos(x)) i
9483928192 \cos(2 x) + i\sin(2 x) = (\cos(x))^2 + 2 i \cos(x) \sin(x) - (\sin(x))^2
9485384858 \nabla^2 E( \vec{r})\exp(i \omega t) = - \frac{\omega^2}{c^2} E( \vec{r})\exp(i \omega t)
9485747245 \sqrt{\frac{2}{W}} = a
9485747246 -\sqrt{\frac{2}{W}} = a
9492920340 y = \cos(x)+i \sin(x)
9495857278 \psi(x=W) = 0 2022-03-25 BHP: Conversion between Latex and Sympy is incomplete
9499428242 E( \vec{r},t) = E( \vec{r})\exp(i \omega t)
9510328252 KE_{\rm initial} = 0
9524810853 \frac{1/d_2}{1/d_2}
9562264720 [S] = \frac{k_{\rm desorption} [A_{\rm adsorption}]}{k_{\rm adsorption} p_A}
9565166889 T
9582958293 x = \sqrt{(b/(2 a))^2 - (c/a)}-(b/(2 a))
9582958294 x+(b/(2 a)) = \sqrt{(b/(2 a))^2 - (c/a)}
9585727710 \psi(x=0) = 0
9590696981 9.80665
9594072504 m_2
9596004948 x = \langle\psi_{\alpha}| \hat{A} |\psi_{\beta}\rangle
9601500174 v_{\rm Earth\ orbit}
9623791270 d
9640720571 v = \frac{e^2}{4 \pi \epsilon_0 \hbar} \sqrt{\frac{m_e}{2 m}}
9645178657 a t
9658195023 d = v_0 t + \frac{1}{2} a t^2
9674924517 K >> G yfN-LaW1BQAJ
9703482302 G \frac{m_{\rm Earth} m}{r_{\rm Earth}} = \frac{1}{2} m v_{\rm escape}^2
9707028061 a_x = 0
9718685793 \kappa_T = \frac{1}{P}
9746066299 R_2
9749777192 0 = KE_1 + PE_1
9753878784 v
9756089533 \sin( \theta_{\rm Brewster} ) = \frac{n_2}{n_1} \cos( \theta_{\rm Brewster} )
9759901995 v - v_0 = a t
9761485403 Z
9781951738 \kappa_T = \frac{-1}{V} \left( \frac{ \partial V}{\partial P} \right)_T definition of isothermal compressibility
9789485295 v_{\rm satellite}
9794128647 m_1
9805063945 \gamma^2 (x - v t)^2 + y^2 + z^2 = c^2 \gamma^2 \left( t + \frac{ 1 - \gamma^2 }{ \gamma^2 } \frac{x}{v} \right)^2
9830343096 V_1
9838128064 d_2 \frac{4 \pi^2}{T^2} = G \frac{m_1}{r^2}
9847143017 \kappa_T = \frac{-PV}{V} \left( \frac{-1}{P^2}\right)
9848292229 dy = y i dx
9848294829 \frac{d}{dx} y = y i
9854442418 v = \sqrt{\frac{E}{m}}
9858028950 \frac{1}{a^2} = \int_0^W \frac{1-\cos\left(2\frac{n \pi}{W}x\right)}{2} dx
9862900242 y = - \frac{1}{2} g t^2 + v_0 t \sin(\theta) + y_0
9881106100 a
9882526611 v_{0, x} t = x - x_0
9884115626 r
9885190237 i
9889984281 2 (\sin(x))^2 = 1 - \cos(2 x)
9894826550 2 \sin(x) \cos(x) = \frac{1}{2i}\left(\exp(i x)-\exp(-i x) \right) \left(\exp(i x)+\exp(-i x) \right)
9897284307 \frac{d}{t} = \frac{v + v_0}{2}
9903988330 m
9906920183 x
9919999981 \rho = 0
9933742680 r_{\rm Schwarzschild}
9941599459 dU = \left(\frac{\partial U}{\partial T}\right)_V dT + \left(\frac{\partial U}{\partial V}\right)_T dV based on U(p, T, V) = U(T, V)
9956609318 6.67430*10^{-11}
9958485859 \frac{-\hbar^2}{2m} \nabla^2 \psi \left( \vec{r},t \right) = i \hbar \frac{\partial}{\partial t} \psi( \vec{r},t)
9973952056 -g t = v_y - v_{0, y}
9988949211 (\sin(x))^2 = \frac{1 - \cos(2 x)}{2}
9991999979 \vec{ \nabla} \times \vec{E} = -\mu_0\frac{\partial \vec{H}}{\partial t}
9999998870 \frac{ \vec{p}}{\hbar} = \vec{k}
9999999870 \frac{p}{\hbar} = k
9999999960 \hbar = h/(2 \pi)
9999999961 \frac{E}{\hbar} = \omega
9999999962 p = \hbar k
9999999965 E = \omega \hbar
9999999968 x = \frac{-b-\sqrt{b^2-4ac}}{2 a}
9999999969 x = \frac{-b+\sqrt{b^2-4ac}}{2 a}
9999999975 \langle \psi| \hat{A} |\psi \rangle = \langle a \rangle
9999999981 \vec{ \nabla} \cdot \vec{E} = \rho/\epsilon_0
Physics Derivation Graph: 988 Expressions

Delete an expression

This action requires you to be signed in

Edit the name of an expression

This action requires you to be signed in

Add a symbol to the AST for an expression

This action requires you to be signed in

Remove symbol from the AST for an expression

This action requires you to be signed in

Edit the latex for an expression

This action requires you to be signed in

Edit the note for an expression

This action requires you to be signed in