| expression ID |
Latex |
list of symbols |
name |
dimension check |
notes |
used in derivation |
| 0000040490 |
a^2
|
|
|
TODO |
|
|
| 0000999900 |
b/(2 a)
|
|
|
TODO |
|
|
| 0001030901 |
\cos(x)
|
|
|
TODO |
|
|
| 0001111111 |
(\sin(x))^2
|
|
|
TODO |
|
|
| 0001209482 |
2 \pi
|
|
|
TODO |
|
|
| 0001304952 |
\hbar
|
|
|
TODO |
|
|
| 0001334112 |
W
|
|
|
TODO |
|
|
| 0001921933 |
2 i
|
|
|
TODO |
|
|
| 0002239424 |
2
|
|
|
TODO |
|
|
| 0002338514 |
\vec{p}_{2}
|
|
|
TODO |
|
|
| 0002342425 |
m/m
|
|
|
TODO |
|
|
| 0002393922 |
x
|
|
|
TODO |
|
|
| 0002424922 |
a
|
|
|
TODO |
|
|
| 0002436656 |
i \hbar
|
|
|
TODO |
|
|
| 0002449291 |
b/(2 a)
|
|
|
TODO |
|
|
| 0002838490 |
b/(2 a)
|
|
|
TODO |
|
|
| 0002919191 |
\sin(-x)
|
|
|
TODO |
|
|
| 0002929944 |
1/2
|
|
|
TODO |
|
|
| 0002940021 |
2 \pi
|
|
|
TODO |
|
|
| 0003232242 |
t
|
|
|
TODO |
|
|
| 0003413423 |
\cos(-x)
|
|
|
TODO |
|
|
| 0003747849 |
-1
|
|
|
TODO |
|
|
| 0003838111 |
2
|
|
|
TODO |
|
|
| 0003919391 |
x
|
|
|
TODO |
|
|
| 0003949052 |
-x
|
|
|
TODO |
|
|
| 0003949921 |
\hbar
|
|
|
TODO |
|
|
| 0003954314 |
dx
|
|
|
TODO |
|
|
| 0003981813 |
-\sin(x)
|
|
|
TODO |
|
|
| 0004089571 |
2 x
|
|
|
TODO |
|
|
| 0004264724 |
y
|
|
|
TODO |
|
|
| 0004307451 |
(b/(2 a))^2
|
|
|
TODO |
|
|
| 0004582412 |
x
|
|
|
TODO |
|
|
| 0004829194 |
2
|
|
|
TODO |
|
|
| 0004831494 |
a
|
|
|
TODO |
|
|
| 0004849392 |
x
|
|
|
TODO |
|
|
| 0004858592 |
h
|
|
|
TODO |
|
|
| 0004934845 |
x
|
|
|
TODO |
|
|
| 0004948585 |
a
|
|
|
TODO |
|
|
| 0005395034 |
a_{\alpha} \langle \psi_{\alpha} | \psi_{\beta} \rangle
|
|
|
TODO |
|
|
| 0005626421 |
t
|
|
|
TODO |
|
|
| 0005749291 |
f
|
|
|
TODO |
|
|
| 0005938585 |
\frac{-\hbar^2}{2m}
|
|
|
TODO |
|
|
| 0006466214 |
(\sin(x))^2
|
|
|
TODO |
|
|
| 0006544644 |
t
|
|
|
TODO |
|
|
| 0006563727 |
x
|
|
|
TODO |
|
|
| 0006644853 |
c/a
|
|
|
TODO |
|
|
| 0006656532 |
e
|
|
|
TODO |
|
|
| 0007471778 |
2(\sin(x))^2
|
|
|
TODO |
|
|
| 0007563791 |
i
|
|
|
TODO |
|
|
| 0007636749 |
x
|
|
|
TODO |
|
|
| 0007894942 |
(\sin(x))^2
|
|
|
TODO |
|
|
| 0008837284 |
T
|
|
|
TODO |
|
|
| 0008842811 |
\cos(2 x)
|
|
|
TODO |
|
|
| 0009458842 |
\psi(x)
|
|
|
TODO |
|
|
| 0009484724 |
\frac{n \pi}{W}x
|
|
|
TODO |
|
|
| 0009485857 |
a^2\frac{2}{W}
|
|
|
TODO |
|
|
| 0009485858 |
\frac{2n\pi}{W}
|
|
|
TODO |
|
|
| 0009492929 |
v du
|
|
|
TODO |
|
|
| 0009587738 |
\psi
|
|
|
TODO |
|
|
| 0009877781 |
y
|
|
|
TODO |
|
|
| 0203024440 |
1 = \int_0^W a \sin\left(\frac{n \pi}{W} x\right) \psi(x)^* dx
|
|
|
TODO |
|
|
| 0404050504 |
\lambda = \frac{v}{f}
|
|
|
TODO |
|
|
| 0439492440 |
\frac{1}{a^2} = \frac{1}{2}W - \frac{1}{2}\left. \frac{W}{2n\pi}\sin\left(\frac{2n\pi}{W} x\right) \right|_0^W
|
|
|
TODO |
evaluating-definite-integrals-for.html
|
|
| 0934990943 |
k = \frac{2 \pi}{v T}
|
|
|
TODO |
|
|
| 0948572140 |
\int \cos(a x) dx = \frac{1}{a}\sin(a x)
|
|
|
TODO |
|
|
| 1010393913 |
\langle \psi| \hat{A}^+ |\psi \rangle = \langle a \rangle^*
|
|
|
TODO |
stats.html
|
|
| 1010393944 |
x = \langle\psi_{\alpha}| a_{\beta} |\psi_{\beta} \rangle
|
|
|
TODO |
|
|
| 1010923823 |
k W = n \pi
|
|
|
TODO |
|
|
| 1020010291 |
0 = a \sin(k W)
|
|
|
TODO |
|
|
| 1020394900 |
p = h/\lambda
|
|
|
TODO |
|
|
| 1020394902 |
E = h f
|
|
|
TODO |
|
|
| 1020854560 |
I = (A + B)(A + B)^*
|
|
|
TODO |
|
|
| 1025759423 |
y
|
|
|
TODO |
|
|
| 1029039903 |
p = m v
|
|
|
TODO |
|
|
| 1029039904 |
p^2 = m^2 v^2
|
|
|
TODO |
|
|
| 1036530438 |
d_2
|
|
|
TODO |
|
|
| 1038566242 |
\sinh x = \frac{\exp(x) - \exp(-x)}{2}
|
|
|
TODO |
|
|
| 1085150613 |
C_V = \left(\frac{\partial U}{\partial T}\right)_V
|
|
|
TODO |
definition of heat capacity at constant volume
|
|
| 1087417579 |
0 = - \frac{1}{2} g t_f^2 + v_0 t_f \sin(\theta)
|
|
|
TODO |
|
|
| 1092872200 |
KE_1
|
|
|
TODO |
|
|
| 1100332145 |
R
|
|
|
TODO |
|
|
| 1114820451 |
W_{\rm by\ system} = \Delta KE
|
|
Work is change in energy |
TODO |
|
|
| 1128605625 |
{\rm sech}^2\ x + \tanh^2(x) = \frac{4}{\left(\exp(x)+\exp(-x)\right)^2} + \frac{\left(\exp(x)-\exp(-x)\right)^2}{\left(\exp(x)+\exp(-x)\right)^2}
|
|
|
TODO |
|
|
| 1132941271 |
m_{\rm Earth} = \frac{(9.80665 m/s^2) (6.3781*10^6 m)^2}{6.67430*10^{-11}m^3 kg^{-1} s^{-2}}
|
|
|
TODO |
|
|
| 1143343287 |
G \frac{m_{\rm Earth}}{r_{\rm Earth}} = \frac{1}{2} v_{\rm escape}^2
|
|
|
TODO |
|
|
| 1158485859 |
\frac{-\hbar^2}{2m} \nabla^2 = {\cal H}
|
|
|
TODO |
|
|
| 1166310428 |
0 dt = d v_x
|
|
|
TODO |
|
|
| 1172039918 |
I_{\rm coherent} = 4 |A|^2
|
|
|
TODO |
|
|
| 1190768176 |
\kappa_T = \frac{-nRT}{V} \left( \frac{ \partial }{\partial P}\left(\frac{1}{P}\right) \right)_T
|
|
|
TODO |
|
|
| 1191796961 |
\frac{1}{2} g t_f = v_0 \sin(\theta)
|
|
|
TODO |
|
|
| 1193980495 |
m_{\rm Earth}
|
|
|
TODO |
|
|
| 1201689765 |
x'^2 + y'^2 + z'^2 = c^2 t'^2
|
|
|
TODO |
describes a spherical wavefront for an observer in a moving frame of reference
|
|
| 1202310110 |
\frac{1}{a^2} = \int_0^W \frac{1}{2} dx - \frac{1}{2} \int_0^W \cos\left(2\frac{n \pi}{W}x\right) dx
|
|
|
TODO |
|
|
| 1202312210 |
\frac{1}{a^2} = \frac{1}{2}W - \frac{1}{2} \int_0^W \cos\left(2\frac{n \pi}{W}x\right) dx
|
|
|
TODO |
|
|
| 1203938249 |
a_{\beta} \langle \psi_{\alpha} | \psi_{\beta} \rangle = a_{\alpha} \langle \psi_{\alpha} | \psi_{\beta} \rangle
|
|
|
TODO |
|
|
| 1238593037 |
c
|
|
|
TODO |
|
|
| 1248277773 |
\cos(2 x) = 1 - 2 (\sin(x))^2
|
|
|
TODO |
|
|
| 1258245373 |
E
|
|
|
TODO |
|
|
| 1259826355 |
d = (v - a t) t + \frac{1}{2} a t^2
|
|
|
TODO |
|
|
| 1265150401 |
d = \frac{2 v_0 + a t}{2} t
|
|
|
TODO |
|
|
| 1268845856 |
[A_{\rm adsorption}]
|
|
|
TODO |
|
|
| 1277713901 |
d
|
|
|
TODO |
|
|
| 1292735067 |
F_{gravitational} = G \frac{m_1 m_2}{r^2}
|
|
|
TODO |
|
|
| 1293913110 |
0 = b
|
|
|
TODO |
|
|
| 1293923844 |
\lambda = v T
|
|
|
TODO |
|
|
| 1306360899 |
x = v_{0, x} t + x_0
|
|
|
TODO |
|
|
| 1310571337 |
\theta_{\rm refracted} = 90^{\circ} - \theta_{\rm Brewster}
|
|
|
TODO |
|
|
| 1311403394 |
\alpha = \frac{1}{V} \frac{nR}{P} \left( \frac{\partial T}{\partial T} \right)_P
|
|
|
TODO |
|
|
| 1314464131 |
\vec{ \nabla} \times \frac{\partial \vec{H}}{\partial t} = \epsilon_0 \frac{\partial^2 \vec{E}}{\partial t^2}
|
|
|
TODO |
|
|
| 1314864131 |
\vec{ \nabla} \times \vec{H} = \epsilon_0 \frac{\partial }{\partial t}\vec{E}
|
|
|
TODO |
|
|
| 1323602089 |
I_1
|
|
|
TODO |
|
|
| 1330874553 |
v_{\rm escape} = \sqrt{2 G \frac{m_{\rm Earth}}{r_{\rm Earth}}}
|
|
|
TODO |
|
|
| 1333474099 |
F_{\rm centripetal}
|
|
|
TODO |
|
|
| 1357848476 |
A = |A| \exp(i \theta)
|
|
|
TODO |
|
|
| 1377431959 |
R
|
|
|
TODO |
|
|
| 1395858355 |
x = \langle \psi_{\alpha}| a_{\alpha} |\psi_{\beta}\rangle
|
|
|
TODO |
|
|
| 1405465835 |
y = - \frac{1}{2} g t^2 + v_{0, y} t + y_0
|
|
|
TODO |
|
|
| 1413137236 |
m_1
|
|
|
TODO |
|
|
| 1439089569 |
v_{0, x}
|
|
|
TODO |
|
|
| 1451839362 |
t
|
|
|
TODO |
|
|
| 1457415749 |
\frac{1}{R_{\rm total}} = \frac{1}{R_1} + \frac{1}{R_2}
|
|
total resistance for two resistors in parallel |
TODO |
|
|
| 1484794622 |
R_2
|
|
|
TODO |
|
|
| 1511199318 |
Z
|
|
|
TODO |
|
|
| 1512581563 |
x
|
|
|
TODO |
|
|
| 1525861537 |
I = |A|^2 + |B|^2 + A B^* + B A^*
|
|
|
TODO |
|
|
| 1528310784 |
\gamma = \frac{1}{\sqrt{1-\frac{v^2}{c^2}}}
|
|
|
TODO |
|
|
| 1541916015 |
\theta = \frac{\pi}{4}
|
|
|
TODO |
|
|
| 1552869972 |
x_1
|
|
|
TODO |
|
|
| 1556389363 |
E_{\rm Rydberg} = \frac{ m_e e^4 }{ 32 \pi^2 \epsilon_0^2 \hbar^2}
|
|
|
TODO |
the bonding energy in condensed phases is given by the Rydberg energy on the order of several e
|
|
| 1559688463 |
\left(\frac{T_{\rm geostationary\ orbit}^2 G m_{\rm Earth}}{4 \pi^2}\right)^{1/3} = r_{\rm geostationary\ orbit}
|
|
|
TODO |
|
|
| 1571582377 |
F_{gravitational} \propto \frac{1}{r^2}
|
|
|
TODO |
|
|
| 1586866563 |
\left( \gamma^2 - c^2 \gamma^2 \left( \frac{1-\gamma^2}{\gamma^2} \right)^2 \frac{1}{v^2} \right) x^2 + y^2 + z^2 + \left( -\gamma^2 2 x v t - c^2 \gamma^2 2 t \left( \frac{1-\gamma^2}{\gamma^2} \right) \frac{x}{v} \right) = t^2 \left( c^2 \gamma^2 - \gamma^2 v^2 \right)
|
|
|
TODO |
|
|
| 1590774089 |
dW = F dx
|
|
|
TODO |
|
|
| 1608399874 |
V_2
|
|
|
TODO |
|
|
| 1614343171 |
dt
|
|
|
TODO |
|
|
| 1616666229 |
v_{\rm final}
|
|
|
TODO |
|
|
| 1635147226 |
m_2
|
|
|
TODO |
|
|
| 1636453295 |
\vec{ \nabla} \times \vec{ \nabla} \times \vec{E} = - \nabla^2 \vec{E}
|
|
|
TODO |
|
|
| 1638282134 |
\vec{p}_{\rm before} = \vec{p}_{\rm after}
|
|
|
TODO |
|
|
| 1639827492 |
- c^2 \frac{(1-\gamma^2)}{v^2 \gamma^2} = 1
|
|
|
TODO |
|
|
| 1648958381 |
\nabla^2 \psi \left( \vec{r},t \right) = \frac{i}{\hbar} \vec{p} \cdot \left( \vec{ \nabla} \psi( \vec{r},t) \right)
|
|
|
TODO |
representing-laplace-operator-nabla-in.html
|
|
| 1650441634 |
y_0 = 0
|
|
|
TODO |
define coordinate system such that initial height is at origin
|
|
| 1676472948 |
0 = v_x - v_{0, x}
|
|
|
TODO |
|
|
| 1702349646 |
-g dt = d v_y
|
|
|
TODO |
|
|
| 1716984328 |
i x
|
|
|
TODO |
|
|
| 1742775076 |
Z
|
|
|
TODO |
|
|
| 1772416655 |
\frac{E_2 - E_1}{t} = v F - F v
|
|
|
TODO |
|
|
| 1772973171 |
-\frac{k}{m} x = -A \omega^2 \cos(\omega t)
|
|
|
TODO |
|
|
| 1784114349 |
\sqrt{\frac{k}{m}} = \omega
|
|
|
TODO |
|
|
| 1809909100 |
\frac{E_2 - E_1}{t} = 0
|
|
|
TODO |
|
|
| 1811867899 |
T^2 = \frac{d_1+d_2}{d_1+d_2} d_2 4 \pi^2 \frac{r^2}{G m_1}
|
|
|
TODO |
|
|
| 1815398659 |
U = Q + W
|
|
|
TODO |
|
|
| 1819663717 |
a_x = \frac{d}{dt} v_x
|
|
|
TODO |
|
|
| 1823570358 |
C
|
|
|
TODO |
|
|
| 1840080113 |
KE_2 = 0
|
|
|
TODO |
object is not moving at $x=\infty$
|
|
| 1848400430 |
F \propto m
|
|
|
TODO |
|
|
| 1857710291 |
0 = a \sin(n \pi)
|
|
|
TODO |
|
|
| 1858578388 |
\nabla^2 E( \vec{r})\exp(i \omega t) = - \omega^2 \mu_0 \epsilon_0 E( \vec{r})\exp(i \omega t)
|
|
|
TODO |
representing-laplace-operator-nabla-in.html
|
|
| 1858772113 |
k = \frac{n \pi}{W}
|
|
|
TODO |
|
|
| 1888494137 |
-\sqrt{\frac{k}{m}} = \omega
|
|
|
TODO |
|
|
| 1894894315 |
Z
|
|
|
TODO |
|
|
| 1916173354 |
-\gamma^2 v^2 + c^2 \gamma^2 = c^2
|
|
|
TODO |
|
|
| 1928085940 |
Z^* = |Z| \exp( -i \theta )
|
|
|
TODO |
|
|
| 1931103031 |
\frac{k}{m} = \omega^2
|
|
|
TODO |
|
|
| 1934748140 |
\int |\psi(x)|^2 dx = 1
|
|
|
TODO |
|
|
| 1935543849 |
\gamma^2 x^2 - \gamma^2 2 x v t + \gamma^2 v^2 t^2 + y^2 + z^2 = c^2 \gamma^2 \left(\frac{1-\gamma^2}{\gamma^2}\right)\frac{x^2}{\gamma^2} + c^2 \gamma^2 2 t \left(\frac{1-\gamma^2}{\gamma^2}\right)\frac{x}{\gamma} + c^2 \gamma^2 t^2
|
|
|
TODO |
|
|
| 1945487024 |
p_A [S]
|
|
|
TODO |
|
|
| 1963253044 |
v_{0, x} dt = dx
|
|
|
TODO |
|
|
| 1967582749 |
t = \frac{v - v_0}{a}
|
|
|
TODO |
|
|
| 1974334644 |
\frac{x (1 - \gamma^2 )}{\gamma v} + \frac{\gamma^2 v t}{\gamma v} = t'
|
|
|
TODO |
|
|
| 1977955751 |
-g = \frac{d}{dt} v_y
|
|
|
TODO |
|
|
| 1994296484 |
v_{\rm satellite}^2 = G \frac{m_{\rm Earth}}{r}
|
|
|
TODO |
|
|
| 2005061870 |
v(r) = \sqrt{\frac{2 G m_2}{r}}
|
|
|
TODO |
|
|
| 2016063530 |
t
|
|
|
TODO |
|
|
| 2029293929 |
\nabla^2 E( \vec{r})\exp(i \omega t) = \mu_0 \epsilon_0 \frac{\partial^2}{\partial t^2} E( \vec{r})\exp(i \omega t)
|
|
|
TODO |
representing-laplace-operator-nabla-in.html
|
|
| 2042298788 |
0 = -G \frac{m_{\rm Earth} m}{r_{\rm Earth}} + \frac{1}{2} m v_{\rm escape}^2
|
|
|
TODO |
|
|
| 2051901211 |
\frac{V}{R_1} = I_1
|
|
|
TODO |
|
|
| 2061086175 |
W_{\rm to\ system} = -G m_1 m_2 \left(\frac{-1}{r} - \frac{-1}{\infty}\right)
|
|
|
TODO |
|
|
| 2064205392 |
A
|
|
|
TODO |
|
|
| 2076171250 |
-\gamma^2 2 x v t - c^2 \gamma^2 2 t \left( \frac{1-\gamma^2}{\gamma^2} \right) \frac{x}{v} = 0
|
|
|
TODO |
|
|
| 2081689540 |
t
|
|
|
TODO |
|
|
| 2086924031 |
0 = - \frac{1}{2} g t_f + v_0 \sin(\theta)
|
|
|
TODO |
|
|
| 2091584724 |
g_{\rm Earth}
|
|
|
TODO |
|
|
| 2096918413 |
x = \gamma ( \gamma x - \gamma v t + v t' )
|
|
|
TODO |
|
|
| 2103023049 |
\sin(x) = \frac{1}{2i}\left(\exp(i x)-\exp(-i x) \right)
|
|
|
TODO |
|
|
| 2113211456 |
f = 1/T
|
|
|
TODO |
|
|
| 2114570475 |
m_{\rm satellite}
|
|
|
TODO |
|
|
| 2114909846 |
\theta_A = \frac{[A_{\rm adsorption}]}{[S_0]}
|
|
|
TODO |
|
|
| 2121790783 |
\tanh^2(x) = \frac{ \left(\exp(x)-\exp(-x)\right)^2}{\left(\exp(x)+\exp(-x)\right)^2}
|
|
|
TODO |
|
|
| 2123139121 |
-\exp(-i x) = -\cos(x)+i \sin(x)
|
|
|
TODO |
|
|
| 2131616531 |
T f = 1
|
|
|
TODO |
|
|
| 2135482543 |
m
|
|
|
TODO |
|
|
| 2148049269 |
-\frac{k}{m} A \cos(\omega t) = -A \omega^2 \cos(\omega t)
|
|
|
TODO |
|
|
| 2168306601 |
[S_0] = \left(\frac{k_{\rm desorption}}{k_{\rm adsorption}} \frac{1}{p_A} + 1\right)[A_{\rm adsorption}]
|
|
|
TODO |
|
|
| 2186083170 |
\frac{KE_2 - KE_1}{t} = v F
|
|
|
TODO |
|
|
| 2217103163 |
\frac{m_1 d_1}{d_2} = m_2
|
|
|
TODO |
|
|
| 2226340358 |
\gamma v
|
|
|
TODO |
|
|
| 2232825726 |
g_{\rm Earth}
|
|
|
TODO |
|
|
| 2236639474 |
(A + B)(A + B)^* = |A + B|^2
|
|
|
TODO |
|
|
| 2242144313 |
a
|
|
|
TODO |
|
|
| 2257410739 |
\left(\frac{\partial U}{\partial T}\right)_p = C_V \left(\frac{\partial T}{\partial T}\right)_p + \pi_T V \alpha
|
|
|
TODO |
|
|
| 2258485859 |
{\cal H} \psi \left( \vec{r},t \right) = i \hbar \frac{\partial}{\partial t} \psi( \vec{r},t)
|
|
|
TODO |
|
|
| 2267521164 |
PE_2 = 0
|
|
|
TODO |
object goes to $\infty$ away from gravitational source
|
|
| 2271186630 |
V = I_{\rm total} R_{\rm total}
|
|
|
TODO |
|
|
| 2293352649 |
\theta - \phi
|
|
|
TODO |
|
|
| 2297105551 |
d = v_0 \frac{2 v_0 \sin(\theta)}{g} \cos(\theta)
|
|
|
TODO |
|
|
| 2308660627 |
G \frac{m_{\rm Earth}}{r_{\rm Earth}^2} = g_{\rm Earth}
|
|
|
TODO |
|
|
| 2334518266 |
m a = -k x
|
|
|
TODO |
|
|
| 2344320475 |
E_2
|
|
|
TODO |
|
|
| 2346150725 |
r
|
|
|
TODO |
|
|
| 2346952973 |
m
|
|
|
TODO |
|
|
| 2366691988 |
\int 0 dt = \int d v_x
|
|
|
TODO |
|
|
| 2378095808 |
x_f = x_0 + d
|
|
|
TODO |
|
|
| 2394240499 |
x = a_{\beta} \langle \psi_{\alpha} | \psi_{\beta} \rangle
|
|
|
TODO |
|
|
| 2394853829 |
\exp(-i x) = \cos(-x)+i \sin(-x)
|
|
|
TODO |
|
|
| 2394935831 |
( a_{\beta} - a_{\alpha} ) \langle \psi_{\alpha} | \psi_{\beta} \rangle = 0
|
|
|
TODO |
|
|
| 2394935835 |
\left(\langle\psi| \hat{A} |\psi \rangle \right)^+ = \left(\langle a \rangle\right)^+
|
|
|
TODO |
|
|
| 2395958385 |
\nabla^2 \psi \left( \vec{r},t \right) = \frac{-p^2}{\hbar} \psi( \vec{r},t)
|
|
|
TODO |
representing-laplace-operator-nabla-in.html
|
|
| 2396787389 |
r_{\rm Earth}
|
|
|
TODO |
|
|
| 2397692197 |
a^3
|
|
|
TODO |
|
|
| 2403773761 |
t
|
|
|
TODO |
|
|
| 2404934990 |
\langle x^2\rangle -2\langle x \rangle\langle x \rangle+\langle x \rangle^2 = \langle x^2 \rangle-\langle x \rangle^2
|
|
|
TODO |
|
|
| 2405307372 |
\sin(2 x) = 2 \sin(x) \cos(x)
|
|
|
TODO |
|
|
| 2417941373 |
- c^2 \gamma^2 \frac{(1-\gamma^2)^2}{v^2 \gamma^4} = 1 - \gamma^2
|
|
|
TODO |
|
|
| 2431507955 |
PE_2 = -F x_2
|
|
|
TODO |
|
|
| 2461349007 |
- \frac{1}{2} g t^2 + v_{0, y} t + y_0 = y
|
|
|
TODO |
|
|
| 2472653783 |
\alpha = \frac{1}{T}
|
|
|
TODO |
|
|
| 2484824786 |
F = m g
|
|
|
TODO |
|
|
| 2494533900 |
\langle x^2\rangle -\langle x \rangle^2 = \langle x^2 \rangle-\langle x \rangle^2
|
|
|
TODO |
|
|
| 2501591100 |
\exp(i \pi) + 1 = 0
|
|
|
TODO |
|
|
| 2503972039 |
0 = KE_{\rm escape} + PE_{\rm Earth\ surface}
|
|
|
TODO |
|
|
| 2510804451 |
2/g
|
|
|
TODO |
|
|
| 2519058903 |
\sin(2 \theta) = 2 \sin(\theta) \cos(\theta)
|
|
|
TODO |
|
|
| 2542420160 |
c^2 \gamma^2 - v^2 \gamma^2 = c^2
|
|
|
TODO |
|
|
| 2575937347 |
n_1 \sin( \theta_{\rm Brewster} ) = n_2 \sin( \theta_{\rm refracted} )
|
|
|
TODO |
|
|
| 2613006036 |
\frac{PV}{T} = nR
|
|
|
TODO |
|
|
| 2617541067 |
\left(\frac{T_{\rm orbit}^2 G m_{\rm Earth}}{4 \pi^2}\right)^{1/3} = r
|
|
|
TODO |
|
|
| 2648958382 |
\nabla^2 \psi \left( \vec{r},t \right) = \frac{i}{\hbar} \vec{p} \cdot \left( \frac{i}{\hbar} \vec{p} \psi( \vec{r},t) \right)
|
|
|
TODO |
|
|
| 2660368546 |
r
|
|
|
TODO |
|
|
| 2674546234 |
m_{\rm Earth}
|
|
|
TODO |
|
|
| 2685587762 |
\frac{r_{\rm Earth}^2}{G}
|
|
|
TODO |
|
|
| 2698469612 |
V
|
|
|
TODO |
|
|
| 2700934933 |
2 \cos(x) = \left( \exp(i (\theta - \phi)) + \exp(-i (\theta - \phi)) \right)
|
|
|
TODO |
|
|
| 2715678478 |
I R_{\rm total} = I R_1 + I R_2
|
|
|
TODO |
|
|
| 2719691582 |
|A| = |B|
|
|
|
TODO |
in a loop
|
|
| 2741489181 |
a_y = -g
|
|
|
TODO |
|
|
| 2750380042 |
v_{\rm escape} = -\sqrt{2 G \frac{m_{\rm Earth}}{r_{\rm Earth}}}
|
|
|
TODO |
|
|
| 2754264786 |
2
|
|
|
TODO |
|
|
| 2762326680 |
\cosh^2 x - \sinh^2 x = \frac{1}{4}\left( \exp(2x)+1+1+\exp(-2x) - \left(\exp(2x)-1-1+\exp(-2x)\right) \right)
|
|
|
TODO |
|
|
| 2764966428 |
m_2
|
|
|
TODO |
|
|
| 2768857871 |
\frac{\sin( \theta_{\rm Brewster} )}{\cos( \theta_{\rm Brewster} )} = \frac{n_2}{n_1}
|
|
|
TODO |
|
|
| 2770069250 |
\frac{E_2 - E_1}{t} = \frac{(KE_2 - KE_1)}{t} + \frac{(PE_2 - PE_1)}{t}
|
|
|
TODO |
|
|
| 2773628333 |
\theta_1
|
|
|
TODO |
|
|
| 2809345867 |
\frac{V}{R_{\rm total}} = I_{\rm total}
|
|
|
TODO |
|
|
| 2848934890 |
\langle a \rangle^* = \langle a \rangle
|
|
|
TODO |
|
|
| 2857430695 |
a = \frac{v_2 - v_1}{t}
|
|
acceleration |
TODO |
|
|
| 2858549874 |
- \frac{1}{2} g t^2 + v_{0, y} t = y - y_0
|
|
|
TODO |
|
|
| 2867848403 |
I
|
|
|
TODO |
|
|
| 2883079365 |
r_{\rm Schwarzschild} c^2 = 2 G m
|
|
|
TODO |
|
|
| 2897612567 |
v = \alpha c \sqrt{ \frac{m_e}{A m_p} }
|
|
|
TODO |
|
|
| 2902772962 |
\tanh(x) = \frac{\frac{1}{2}\left( \exp(x)-\exp(-x) \right)}{\cosh(x)}
|
|
|
TODO |
|
|
| 2906548078 |
T^2 = \frac{r}{d_1+d_2} d_2 4 \pi^2 \frac{r^2}{G m_1}
|
|
|
TODO |
|
|
| 2907404069 |
W_{\rm by\ system} = W_{\rm to\ system}
|
|
|
TODO |
|
|
| 2924222857 |
v_{\rm initial} = v(r=\infty)
|
|
|
TODO |
|
|
| 2944838499 |
\psi(x) = a \sin(\frac{n \pi}{W} x)
|
|
|
TODO |
|
|
| 2957211007 |
m^3 kg^{-1} s^{-2}
|
|
|
TODO |
|
|
| 2977457786 |
2 G \frac{m_{\rm Earth}}{r_{\rm Earth}} = v_{\rm escape}^2
|
|
|
TODO |
|
|
| 2983053062 |
x = \gamma (x' + v t')
|
|
|
TODO |
|
|
| 2998709778 |
v_{\rm initial} = 0
|
|
|
TODO |
|
|
| 2999795755 |
c^2 \gamma^2 = v^2 \gamma^2 + c^2
|
|
|
TODO |
|
|
| 3004158505 |
\frac{T^2}{r} F_{gravitational} = \left( \frac{4 \pi^2 m r}{T^2} \right)\frac{T^2}{r}
|
|
|
TODO |
|
|
| 3031116098 |
R_2
|
|
|
TODO |
|
|
| 3041762466 |
i
|
|
|
TODO |
|
|
| 3046191961 |
v_{\rm Earth\ orbit} = \frac{C_{\rm Earth\ orbit}}{t_{\rm Earth\ orbit}}
|
|
|
TODO |
|
|
| 3060393541 |
I_{\rm incoherent} = 2|A|^2
|
|
|
TODO |
|
|
| 3061811650 |
n_1 \sin( \theta_{\rm Brewster} ) = n_2 \cos( \theta_{\rm Brewster} )
|
|
|
TODO |
|
|
| 3080027960 |
v_{\rm Earth\ orbit} = \frac{2 \pi r_{\rm Earth\ orbit}}{t_{\rm Earth\ orbit}}
|
|
|
TODO |
|
|
| 3085575328 |
I = |A|^2 + |B|^2 + |A| |B| \exp(i (\theta - \phi)) + |A| |B| \exp(-i (\theta - \phi))
|
|
|
TODO |
|
|
| 3088463019 |
m_2
|
|
|
TODO |
|
|
| 3105350101 |
v_1
|
|
|
TODO |
|
|
| 3121234211 |
\frac{k}{2\pi} = \lambda
|
|
|
TODO |
|
|
| 3121234212 |
p = \frac{h k}{2\pi}
|
|
|
TODO |
|
|
| 3121513111 |
k = \frac{2 \pi}{\lambda}
|
|
|
TODO |
|
|
| 3131111133 |
T = 1 / f
|
|
|
TODO |
|
|
| 3131211131 |
\omega = 2 \pi f
|
|
|
TODO |
|
|
| 3132131132 |
\omega = \frac{2\pi}{T}
|
|
|
TODO |
|
|
| 3147472131 |
\frac{\omega}{2 \pi} = f
|
|
|
TODO |
|
|
| 3166466250 |
m_1
|
|
|
TODO |
|
|
| 3169580383 |
\vec{a} = \frac{d\vec{v}}{dt}
|
|
|
TODO |
acceleration is the change in speed over a duration
|
|
| 3176662571 |
F_{\rm centripetal} = F_{\rm gravity}
|
|
|
TODO |
applicable to any satellite orbit
|
|
| 3182633789 |
\gamma^2 - c^2 \gamma^2 \frac{(1-\gamma^2)^2}{v^2 \gamma^4} = 1
|
|
|
TODO |
|
|
| 3182907803 |
x_0
|
|
|
TODO |
|
|
| 3183197515 |
v_1
|
|
|
TODO |
|
|
| 3214170322 |
v(r=\infty) = 0
|
|
|
TODO |
|
|
| 3219318145 |
\frac{365 {\rm days}}{1 {\rm year}} \frac{24 {\rm hours}}{1 {\rm day}} \frac{60 {\rm minutes}}{1 {\rm hour}} \frac{60 {\rm seconds}}{1 {\rm minute}}
|
|
|
TODO |
|
|
| 3236313290 |
d
|
|
|
TODO |
|
|
| 3246378279 |
m
|
|
|
TODO |
|
|
| 3253234559 |
x = \frac{v_2^2 - v_1^2}{2 a}
|
|
|
TODO |
|
|
| 3268645065 |
x
|
|
|
TODO |
|
|
| 3270039798 |
2
|
|
|
TODO |
|
|
| 3273630811 |
x
|
|
|
TODO |
|
|
| 3274176452 |
v_{\rm initial}
|
|
|
TODO |
|
|
| 3274926090 |
t = \frac{x - x_0}{v_{0, x}}
|
|
|
TODO |
|
|
| 3285732911 |
(\cos(x))^2 = 1-(\sin(x))^2
|
|
|
TODO |
|
|
| 3291685884 |
E = \frac{ m_e e^4 }{ 32 \pi^2 \epsilon_0^2 \hbar^2}
|
|
|
TODO |
|
|
| 3331824625 |
\exp(i \pi) = -1
|
|
|
TODO |
|
|
| 3342155559 |
m
|
|
|
TODO |
|
|
| 3350802342 |
KE_{\rm initial}
|
|
|
TODO |
|
|
| 3350830826 |
Z Z^* = |Z|^2
|
|
|
TODO |
|
|
| 3353418803 |
x
|
|
|
TODO |
|
|
| 3360172339 |
W = KE_2 - KE_1
|
|
|
TODO |
|
|
| 3364286646 |
m_{\rm Earth} = 5.972*10^{24} kg
|
|
|
TODO |
|
|
| 3366703541 |
a = \frac{v - v_0}{t}
|
|
|
TODO |
acceleration is the average change in speed over a duration
|
|
| 3398368564 |
F
|
|
|
TODO |
|
|
| 3411994811 |
v_{\rm average} = \frac{d}{t}
|
|
|
TODO |
|
|
| 3412946408 |
v^2 \gamma^2
|
|
|
TODO |
|
|
| 3417126140 |
\tan( \theta_{\rm Brewster} ) = \frac{ n_2 }{ n_1 }
|
|
|
TODO |
|
|
| 3426941928 |
x = \gamma ( \gamma (x - v t) + v t' )
|
|
|
TODO |
|
|
| 3433441359 |
V
|
|
|
TODO |
|
|
| 3448601530 |
\frac{T^2}{r}
|
|
|
TODO |
|
|
| 3462972452 |
v = v_0 + a t
|
|
|
TODO |
|
|
| 3464107376 |
\alpha = \frac{1}{V} \left( \frac{\partial V}{\partial T} \right)_p
|
|
|
TODO |
definition of expansion coefficient
|
|
| 3470587782 |
\sin(x) \cos(x) = \frac{1}{2i}\left(\exp(i x)-\exp(-i x) \right) \frac{1}{2}\left(\exp(i x)+\exp(-i x) \right)
|
|
|
TODO |
|
|
| 3472836147 |
r_{\rm Earth\ orbit} = 1.496\ 10^8 {\rm km}
|
|
|
TODO |
|
|
| 3485125659 |
x_f = v_0 t_f \cos(\theta) + x_0
|
|
|
TODO |
|
|
| 3485475729 |
\nabla^2 E( \vec{r}) = - \frac{\omega^2}{c^2} E( \vec{r})
|
|
|
TODO |
representing-laplace-operator-nabla-in.html
|
|
| 3486213448 |
m_{\rm satellite}
|
|
|
TODO |
|
|
| 3488423948 |
k_{\rm adsorption} p_A [S] = k_{\rm desorption} [A_{\rm adsorption}]
|
|
|
TODO |
|
|
| 3495403335 |
x
|
|
|
TODO |
|
|
| 3497828859 |
V = \frac{n R T}{P}
|
|
|
TODO |
|
|
| 3507029294 |
k_{\rm adsorption} p_A [S] = r_{\rm desorption}
|
|
|
TODO |
|
|
| 3512166162 |
W = F x
|
|
|
TODO |
|
|
| 3531380618 |
v(r)
|
|
|
TODO |
|
|
| 3547519267 |
S = k_{\rm Boltzmann} \ln \Omega
|
|
|
TODO |
assumes equally probable microstates
|
|
| 3566149658 |
W_{\rm to\ system} = \int_{\infty}^r \frac{-G m_1 m_2}{x^2} dx
|
|
|
TODO |
|
|
| 3585845894 |
\langle \left(x-\langle x \rangle\right)^2 \rangle = \langle x^2 \rangle-\langle x \rangle^2
|
|
|
TODO |
|
|
| 3591237106 |
\frac{E_2 - E_1}{t} = \frac{(KE_2 - KE_1)}{t} - F v
|
|
|
TODO |
|
|
| 3594626260 |
F_{\rm gravity}
|
|
|
TODO |
|
|
| 3599953931 |
[S_0] = [S] + [A_{\rm adsorption}]
|
|
|
TODO |
|
|
| 3605073197 |
\kappa_T = \frac{-nRT}{V} \left( \frac{-1}{P^2}\right)
|
|
|
TODO |
|
|
| 3607070319 |
d = \frac{v_0^2}{g} \sin\left(2 \frac{\pi}{4}\right)
|
|
|
TODO |
|
|
| 3614055652 |
v = \frac{2 \pi r}{T_{\rm orbit}}
|
|
|
TODO |
|
|
| 3634715785 |
m
|
|
|
TODO |
|
|
| 3649797559 |
F_{\rm centripetal} = m_2 d_2 \omega^2
|
|
|
TODO |
|
|
| 3650370389 |
\frac{T^2}{r} F_{gravitational} = 4 \pi^2 m
|
|
|
TODO |
|
|
| 3650814381 |
F_{gravitational} \propto \frac{m_1 m_2}{r^2}
|
|
|
TODO |
|
|
| 3652511721 |
v
|
|
|
TODO |
|
|
| 3660957533 |
\cos(x) = \frac{1}{2} \left( \exp(i (\theta - \phi)) + \exp(-i (\theta - \phi)) \right)
|
|
|
TODO |
|
|
| 3663007361 |
2
|
|
|
TODO |
|
|
| 3676159007 |
v_{0, x} \int dt = \int dx
|
|
|
TODO |
|
|
| 3685779219 |
\sqrt{f} \approx 2
|
|
|
TODO |
|
|
| 3722461713 |
t
|
|
|
TODO |
|
|
| 3723096423 |
6.3781*10^6
|
|
|
TODO |
|
|
| 3731774096 |
KE
|
|
|
TODO |
|
|
| 3736177473 |
r_{\rm adsorption} = k_{\rm adsorption} p_A [S]
|
|
|
TODO |
|
|
| 3749492596 |
E
|
|
|
TODO |
|
|
| 3781109867 |
T^2 = \frac{r^3 4 \pi^2}{(d_1+d_2) \frac{m_1}{d_2}G}
|
|
|
TODO |
|
|
| 3806977900 |
E_2 - E_1 = 0
|
|
|
TODO |
|
|
| 3809726424 |
PE
|
|
|
TODO |
|
|
| 3829492824 |
\frac{1}{2}\left(\exp(i x)+\exp(-i x) \right) = \cos(x)
|
|
|
TODO |
|
|
| 3846041519 |
PE_{\rm Earth\ surface} = -G \frac{m_{\rm Earth} m}{r_{\rm Earth}}
|
|
|
TODO |
|
|
| 3846345263 |
T_{\rm orbit}
|
|
|
TODO |
|
|
| 3868998312 |
{\rm sech}^2\ x = \frac{4}{\left(\exp(x)+\exp(-x)\right)^2}
|
|
|
TODO |
|
|
| 3876446703 |
m
|
|
|
TODO |
|
|
| 3896798826 |
m_2 d_2 \omega^2 = G \frac{m_1 m_2}{r^2}
|
|
|
TODO |
|
|
| 3906710072 |
G \frac{m_{\rm Earth}}{r} = \frac{4 \pi^2 r^2}{T_{\rm orbit}^2}
|
|
|
TODO |
|
|
| 3911081515 |
-1
|
|
|
TODO |
|
|
| 3920616792 |
T_{\rm geostationary orbit} = 24\ {\rm hours}
|
|
|
TODO |
this applies for geostationary orbits
|
|
| 3921072591 |
m_1
|
|
|
TODO |
|
|
| 3924948349 |
a_{\beta} \langle \psi_{\alpha} | \psi_{\beta} \rangle - a_{\alpha} \langle \psi_{\alpha} | \psi_{\beta} \rangle = 0
|
|
|
TODO |
|
|
| 3935058307 |
v = \sqrt{ \frac{m_e}{m} \frac{e^4}{32 \pi^2 \epsilon_0^2 \hbar^2} }
|
|
|
TODO |
|
|
| 3939572542 |
KE_{\rm final}
|
|
|
TODO |
|
|
| 3942849294 |
\exp(i x)-\exp(-i x) = 2 i \sin(x)
|
|
|
TODO |
|
|
| 3943939590 |
x = a_{\alpha} \langle \psi_{\alpha}| \psi_{\beta}\rangle
|
|
|
TODO |
|
|
| 3947269979 |
\vec{ \nabla} \times \vec{ \nabla} \times \vec{E} = -\mu_0 \epsilon_0 \frac{\partial^2 \vec{E}}{\partial t^2}
|
|
|
TODO |
|
|
| 3948571256 |
\frac{\partial}{\partial t} \psi( \vec{r},t) = \frac{-i}{\hbar}E \psi( \vec{r},t)
|
|
|
TODO |
|
|
| 3948574224 |
\psi( \vec{r},t) = \psi_0 \exp\left(i\left( \vec{k}\cdot\vec{r} - \omega t \right) \right)
|
|
|
TODO |
|
|
| 3948574226 |
\psi( \vec{r},t) = \psi_0 \exp\left(i\left(\frac{ \vec{p}\cdot\vec{r}}{\hbar} - \omega t \right) \right)
|
|
|
TODO |
|
|
| 3948574228 |
\psi( \vec{r},t) = \psi_0 \exp\left(i\left(\frac{ \vec{p}\cdot\vec{r}}{\hbar} - \frac{E t}{\hbar} \right) \right)
|
|
|
TODO |
|
|
| 3948574230 |
\psi( \vec{r},t) = \psi_0 \exp\left(\frac{i}{\hbar}\left( \vec{p}\cdot\vec{r} - E t \right) \right)
|
|
|
TODO |
|
|
| 3948574233 |
\frac{\partial}{\partial t} \psi( \vec{r},t) = \psi_0 \frac{\partial}{\partial t}\exp\left(i\left(\frac{ \vec{p}\cdot\vec{r}}{\hbar} - \frac{E t}{\hbar} \right) \right)
|
|
|
TODO |
|
|
| 3951205425 |
\vec{p}_{\rm after} = \vec{p}_{1}
|
|
|
TODO |
|
|
| 3967985562 |
2
|
|
|
TODO |
|
|
| 4057686137 |
C
|
|
|
TODO |
|
|
| 4072200527 |
\frac{m_{\rm satellite} v_{\rm satellite}^2}{r} = G \frac{m_{\rm Earth} m_{\rm satellite}}{r^2}
|
|
|
TODO |
|
|
| 4075539836 |
A A^* = |A|^2
|
|
|
TODO |
|
|
| 4087145886 |
V = I R
|
|
Ohm's law |
TODO |
Ohm%27s_law
|
|
| 4107032818 |
E_{\rm Rydberg} = E
|
|
|
TODO |
|
|
| 4128500715 |
V = I_1 R_1
|
|
|
TODO |
|
|
| 4139999399 |
x - \gamma^2 x = - \gamma^2 v t + \gamma v t'
|
|
|
TODO |
|
|
| 4147101187 |
KE
|
|
|
TODO |
|
|
| 4147472132 |
E = \frac{h \omega}{2 \pi}
|
|
|
TODO |
|
|
| 4153613253 |
m_{\rm Earth}
|
|
|
TODO |
|
|
| 4158986868 |
a_x \hat{x} + a_y \hat{y} = \frac{d\vec{v}}{dt}
|
|
|
TODO |
|
|
| 4162188238 |
t_f
|
|
|
TODO |
|
|
| 4166155526 |
{\rm sech}\ x = \frac{2}{\exp(x)+\exp(-x)}
|
|
|
TODO |
|
|
| 4167526462 |
v_{0, y}
|
|
|
TODO |
|
|
| 4180845508 |
v_{\rm Earth\ orbit} = 29.8 \frac{{\rm km}}{{\rm sec}}
|
|
|
TODO |
|
|
| 4182362050 |
Z = |Z| \exp( i \theta )
|
|
|
TODO |
Z \in \mathbb{C}
|
|
| 4188580242 |
T^2 = \frac{r^3 4 \pi^2}{\left(m_1+\left(\frac{m_1}{d_2}d_1\right)\right)G}
|
|
|
TODO |
|
|
| 4188639044 |
x
|
|
|
TODO |
|
|
| 4192519596 |
B = |B| \exp(i \phi)
|
|
|
TODO |
|
|
| 4202292449 |
r_{\rm Earth\ orbit}
|
|
|
TODO |
|
|
| 4213426349 |
E_1
|
|
|
TODO |
|
|
| 4218009993 |
x
|
|
|
TODO |
|
|
| 4245712581 |
v = \frac{2 \pi r}{t}
|
|
|
TODO |
|
|
| 4264859781 |
F \propto m_1
|
|
|
TODO |
|
|
| 4267808354 |
F_{gravitational} = m \frac{v^2}{r}
|
|
|
TODO |
|
|
| 4268085801 |
x_0 + d = v_0 t_f \cos(\theta) + x_0
|
|
|
TODO |
|
|
| 4270680309 |
\frac{KE_2 - KE_1}{t} = \frac{1}{2} m \frac{\left( v_2^2 - v_1^2 \right)}{t}
|
|
|
TODO |
|
|
| 4275004561 |
c^2 = 2 G \frac{m}{r_{\rm Schwarzschild}}
|
|
|
TODO |
|
|
| 4287102261 |
x^2 + y^2 + z^2 = c^2 t^2
|
|
|
TODO |
describes a spherical wavefront
|
|
| 4298359835 |
E = \frac{1}{2}m v^2
|
|
|
TODO |
|
|
| 4298359845 |
E = \frac{1}{2m}m^2 v^2
|
|
|
TODO |
|
|
| 4298359851 |
E = \frac{p^2}{2m}
|
|
|
TODO |
|
|
| 4301729661 |
[S_0] = \frac{[A_{\rm adsorption}]}{\left( \frac{k_{\rm adsorption}}{k_{\rm desorption}} \right) p_A} + [A_{\rm adsorption}]
|
|
|
TODO |
|
|
| 4303372136 |
E_1 = KE_1 + PE_1
|
|
|
TODO |
|
|
| 4319470443 |
v_2
|
|
|
TODO |
|
|
| 4319544433 |
1/3
|
|
|
TODO |
|
|
| 4341171256 |
i \hbar \frac{\partial}{\partial t} \psi( \vec{r},t) = \frac{p^2}{2 m} \psi( \vec{r},t)
|
|
|
TODO |
|
|
| 4348571256 |
\frac{\partial}{\partial t} \psi( \vec{r},t) = \frac{-i}{\hbar}\frac{p^2}{2 m} \psi( \vec{r},t)
|
|
|
TODO |
|
|
| 4370074654 |
t = t_f
|
|
|
TODO |
|
|
| 4393258808 |
F_{\rm centripetal} = m r \omega^2
|
|
|
TODO |
|
|
| 4393670960 |
W_{\rm to\ system} = \frac{G m_1 m_2}{r}
|
|
|
TODO |
|
|
| 4394958389 |
\vec{ \nabla}\cdot \left( \vec{ \nabla} \psi( \vec{r},t) \right) = \frac{i}{\hbar} \vec{ \nabla}\cdot\left( \vec{p} \psi( \vec{r},t) \right)
|
|
|
TODO |
|
|
| 4428528271 |
F_{\rm{spring}} = -k x
|
|
Hooke's law |
TODO |
Hooke%27s_law
|
|
| 4437214608 |
Z
|
|
|
TODO |
|
|
| 4447113478 |
\int dW = G m_1 m_2 \int_{ r_{\rm Earth} }^{\infty} \frac{1}{x^2} dx
|
|
|
TODO |
|
|
| 4470433702 |
t_{\rm Earth\ orbit}
|
|
|
TODO |
|
|
| 4490788873 |
F \propto m_2
|
|
|
TODO |
|
|
| 4501377629 |
\tan( \theta_{\rm Brewster} ) = \frac{ \sin( \theta_{\rm Brewster} )}{\cos( \theta_{\rm Brewster} )}
|
|
|
TODO |
|
|
| 4504256452 |
B^* = |B| \exp(-i \phi)
|
|
|
TODO |
|
|
| 4522137851 |
PE_2
|
|
|
TODO |
|
|
| 4560648264 |
v = \sqrt{ \frac{K + (4/3) G}{\rho} }
|
|
|
TODO |
|
|
| 4580545876 |
d = v t - a t^2 + \frac{1}{2} a t^2
|
|
|
TODO |
|
|
| 4583868070 |
B
|
|
|
TODO |
|
|
| 4585828572 |
\epsilon_0 \mu_0 = \frac{1}{c^2}
|
|
|
TODO |
|
|
| 4585932229 |
\cos(x) = \frac{1}{2}\left(\exp(i x)+\exp(-i x) \right)
|
|
|
TODO |
|
|
| 4587046017 |
KE
|
|
|
TODO |
|
|
| 4593428198 |
v_{\rm Earth\ orbit} = \frac{2 \pi r_{\rm Earth\ orbit}}{3.16\ 10^7 {\rm seconds}}
|
|
|
TODO |
|
|
| 4598294821 |
\exp(2 i x) = (\cos(x))^2+2i\cos(x)\sin(x)-(\sin(x))^2
|
|
|
TODO |
|
|
| 4627284246 |
F_{\rm centripetal} = \frac{m_{\rm satellite} v_{\rm satellite}^2}{r}
|
|
|
TODO |
|
|
| 4638429483 |
\exp(2 i x) = (\cos(x)+ i \sin(x))(\cos(x)+ i \sin(x))
|
|
|
TODO |
|
|
| 4648451961 |
v_2^2 - v_1^2 = (v_2 + v_1)(v_2 - v_1)
|
|
|
TODO |
|
|
| 4651061153 |
m_2
|
|
|
TODO |
|
|
| 4662369843 |
x' = \gamma (x - v t)
|
|
|
TODO |
|
|
| 4669290568 |
PE_1 = -F x_1
|
|
|
TODO |
|
|
| 4689334676 |
\theta_A = \frac{K_{\rm equilibrium}\ p_A}{1+K_{\rm equilibrium}\ p_A}
|
|
|
TODO |
|
|
| 4742644828 |
\exp(i x)+\exp(-i x) = 2 \cos(x)
|
|
|
TODO |
|
|
| 4748157455 |
a t = v - v_0
|
|
|
TODO |
|
|
| 4755369593 |
x_2
|
|
|
TODO |
|
|
| 4778077984 |
t_f = \frac{2 v_0 \sin(\theta)}{g}
|
|
|
TODO |
|
|
| 4784793837 |
\frac{KE_2 - KE_1}{t} = m v a
|
|
|
TODO |
|
|
| 4798787814 |
a t + v_0 = v
|
|
|
TODO |
|
|
| 4800170179 |
F = m g_{\rm Earth}
|
|
|
TODO |
|
|
| 4805233006 |
i \sin(i x) = \frac{1}{2}\left(\exp(x) - \exp(-x) \right)
|
|
|
TODO |
|
|
| 4811121942 |
W = \frac{1}{2} m v_2^2 - \frac{1}{2} m v_1^2
|
|
|
TODO |
|
|
| 4820320578 |
F_{gravitational} = F_{centripetal}
|
|
|
TODO |
|
|
| 4827492911 |
\cos(2 x)+(\sin(x))^2 = 1 - (\sin(x))^2
|
|
|
TODO |
|
|
| 4829590294 |
t_f
|
|
|
TODO |
|
|
| 4830221561 |
{\rm sech}^2\ x + \tanh^2(x) = \frac{4+\left(\exp(2x)-1-1+\exp(-2x)\right)}{\left(\exp(x)+\exp(-x)\right)^2}
|
|
|
TODO |
|
|
| 4830480629 |
x
|
|
|
TODO |
|
|
| 4838429483 |
\exp(2 i x) = \cos(2 x)+i \sin(2 x)
|
|
|
TODO |
|
|
| 4843995999 |
\frac{1}{2 i}\left(\exp(i x)-\exp(-i x) \right) = \sin(x)
|
|
|
TODO |
|
|
| 4857472413 |
1 = \int \psi(x)\psi(x)^* dx
|
|
|
TODO |
|
|
| 4857475848 |
\frac{1}{a^2} = \frac{W}{2}
|
|
|
TODO |
|
|
| 4858693811 |
\frac{T_{\rm orbit}^2 G m_{\rm Earth}}{4 \pi^2} = r^3
|
|
|
TODO |
|
|
| 4866160902 |
\frac{V}{R_{\rm total}} = \frac{V}{R_1} + \frac{V}{R_2}
|
|
|
TODO |
|
|
| 4872163189 |
\tanh(x) = \frac{\sinh(x)}{\cosh(x)}
|
|
|
TODO |
|
|
| 4872970974 |
\frac{PE_2 - PE_1}{t} = -F v
|
|
|
TODO |
|
|
| 4878728014 |
\sin(i x) = \frac{1}{2i}\left(\exp(-x) - \exp(x) \right)
|
|
|
TODO |
|
|
| 4901237716 |
1
|
|
|
TODO |
|
|
| 4923339482 |
i x = \log(y)
|
|
|
TODO |
|
|
| 4928007622 |
KE_1 = \frac{1}{2} m v_1^2
|
|
|
TODO |
|
|
| 4928239482 |
\log(y) = i x
|
|
|
TODO |
|
|
| 4935235303 |
x
|
|
|
TODO |
|
|
| 4938429482 |
\exp(-i x) = \cos(x)+i \sin(-x)
|
|
|
TODO |
|
|
| 4938429483 |
\exp(i x) = \cos(x)+i \sin(x)
|
|
|
TODO |
|
|
| 4938429484 |
\exp(-i x) = \cos(x)-i \sin(x)
|
|
|
TODO |
|
|
| 4939880586 |
V_{\rm total} = I R_{\rm total}
|
|
|
TODO |
|
|
| 4943571230 |
\vec{ \nabla} \psi( \vec{r},t) = \frac{i}{\hbar} \vec{p} \psi_0 \exp\left(\frac{i}{\hbar}\left( \vec{p}\cdot\vec{r} - E t \right) \right)
|
|
|
TODO |
|
|
| 4947831649 |
\frac{1}{2} m_1 v_{\rm final}^2 = W_{\rm to\ system}
|
|
|
TODO |
|
|
| 4948763856 |
2 a d + v_0^2 = v^2
|
|
|
TODO |
|
|
| 4948934890 |
\langle \psi| \hat{A} |\psi \rangle = \langle a \rangle^*
|
|
|
TODO |
|
|
| 4949359835 |
\langle x^2\rangle -2\langle x^2 \rangle+\langle x \rangle^2 = \langle x^2 \rangle-\langle x \rangle^2
|
|
|
TODO |
|
|
| 4961662865 |
x
|
|
|
TODO |
|
|
| 4968680693 |
\tan( x ) = \frac{ \sin( x )}{\cos( x )}
|
|
|
TODO |
|
|
| 4985825552 |
\nabla^2 E( \vec{r})\exp(i \omega t) = i \omega \mu_0 \epsilon_0 \frac{\partial}{\partial t} E( \vec{r})\exp(i \omega t)
|
|
|
TODO |
representing-laplace-operator-nabla-in.html
|
|
| 5002539602 |
dU = C_V dT + \pi_T dV
|
|
|
TODO |
|
|
| 5011888122 |
v_2
|
|
|
TODO |
|
|
| 5021965469 |
KE
|
|
|
TODO |
|
|
| 5050429607 |
G \frac{m_{\rm Earth} m}{r_{\rm Earth}}
|
|
|
TODO |
|
|
| 5074423401 |
V
|
|
|
TODO |
|
|
| 5075406409 |
PE
|
|
|
TODO |
|
|
| 5085809757 |
\frac{k_{\rm adsorption}}{k_{\rm desorption}} = \frac{[A_{\rm adsorption}]}{p_A [S]}
|
|
|
TODO |
|
|
| 5089196493 |
F
|
|
|
TODO |
|
|
| 5125940051 |
I = |A|^2 + B B^* + A B^* + B A^*
|
|
|
TODO |
|
|
| 5128670694 |
m_1 d_1 = m_2 d_2
|
|
|
TODO |
|
|
| 5136652623 |
E = KE + PE
|
|
mechanical energy is the sum of the potential plus kinetic energies |
TODO |
|
|
| 5144263777 |
v^2 = v_0^2 + 2 a \left( v_0 t +\frac{1}{2} a t^2 \right)
|
|
|
TODO |
|
|
| 5148266645 |
t' = \frac{\gamma x (1 - \gamma^2 )}{\gamma^2 v} + \gamma t
|
|
|
TODO |
|
|
| 5177311762 |
v = \frac{2 \pi r}{T}
|
|
|
TODO |
|
|
| 5181421075 |
R_1
|
|
|
TODO |
|
|
| 5194141542 |
x_f
|
|
|
TODO |
|
|
| 5208737840 |
T_{\rm geostationary\ orbit}
|
|
|
TODO |
|
|
| 5239755033 |
v_1
|
|
|
TODO |
|
|
| 5258419993 |
R_1
|
|
|
TODO |
|
|
| 5284610349 |
\gamma^2
|
|
|
TODO |
|
|
| 5323719091 |
i \sinh x = \frac{1}{2i} \left( \exp(-x) - \exp(x) \right)
|
|
|
TODO |
|
|
| 5345738321 |
F = m a
|
|
Newton's second law of motion |
TODO |
Newton%27s_laws_of_motion#Newton's_second_law
|
|
| 5349669879 |
\tanh(x) = \frac{ \exp(x)-\exp(-x)}{\exp(x)+\exp(-x)}
|
|
|
TODO |
|
|
| 5349866551 |
\vec{v} = v_x \hat{x} + v_y \hat{y}
|
|
|
TODO |
|
|
| 5353282496 |
d = \frac{v_0^2}{g}
|
|
|
TODO |
|
|
| 5359471792 |
\frac{m_{\rm satellite}}{r}
|
|
|
TODO |
|
|
| 5373931751 |
t = t_f
|
|
|
TODO |
|
|
| 5379546684 |
y_f = - \frac{1}{2} g t_f^2 + v_0 t_f \sin(\theta) + y_0
|
|
|
TODO |
|
|
| 5398681502 |
v
|
|
|
TODO |
|
|
| 5398681503 |
v
|
|
|
TODO |
|
|
| 5404822208 |
v_{\rm escape} = \sqrt{2 G \frac{m}{r}}
|
|
escape velocity |
TODO |
|
|
| 5415824175 |
x(t) = A \cos(\omega t)
|
|
|
TODO |
|
|
| 5426308937 |
v = \frac{d}{t}
|
|
|
TODO |
|
|
| 5426418187 |
[A_{\rm adsorption}]
|
|
|
TODO |
|
|
| 5438722682 |
x = v_0 t \cos(\theta) + x_0
|
|
|
TODO |
|
|
| 5453995431 |
\arctan{ x }
|
|
|
TODO |
|
|
| 5463275819 |
I_2
|
|
|
TODO |
|
|
| 5514556106 |
E_2 - E_1 = (KE_2 - KE_1) + (PE_2 - PE_1)
|
|
|
TODO |
|
|
| 5516739892 |
-1
|
|
|
TODO |
|
|
| 5530148480 |
\vec{p}_{1}-\vec{p}_{2} = \vec{p}_{electron}
|
|
|
TODO |
|
|
| 5542390646 |
2 a
|
|
|
TODO |
|
|
| 5542528160 |
\int dW = F \int_0^x dx
|
|
|
TODO |
|
|
| 5563580265 |
F_{\rm gravity} = G \frac{m_{\rm Earth} m_{\rm satellite}}{r^2}
|
|
|
TODO |
|
|
| 5585739998 |
I
|
|
|
TODO |
|
|
| 5586102077 |
r = d_1 + d_2
|
|
|
TODO |
|
|
| 5591692598 |
KE_1
|
|
|
TODO |
|
|
| 5596822289 |
W_{\rm to\ system} = -G m_1 m_2 \left(\left.\frac{-1}{x}\right|^r_{\infty}\right)
|
|
|
TODO |
|
|
| 5611024898 |
d = \frac{1}{2 a} (v^2 - v_0^2)
|
|
|
TODO |
|
|
| 5620558729 |
v_0
|
|
|
TODO |
|
|
| 5623794884 |
A + B
|
|
|
TODO |
|
|
| 5632428182 |
\cos( \theta_{\rm Brewster} )
|
|
|
TODO |
|
|
| 5634116660 |
\pi_T = \left(\frac{\partial U}{\partial V}\right)_T
|
|
|
TODO |
definition of internal pressure at constant temperature
|
|
| 5646314683 |
m = A m_p
|
|
|
TODO |
|
|
| 5658865948 |
T^2 = \frac{r^3 4 \pi^2}{(m_1+m_2)G}
|
|
|
TODO |
|
|
| 5667870149 |
\theta
|
|
|
TODO |
|
|
| 5669500954 |
v^2 \gamma^2
|
|
|
TODO |
|
|
| 5684907106 |
\frac{1}{d_2 4 \pi^2}
|
|
|
TODO |
|
|
| 5693047217 |
v_{\rm final} = -\sqrt{\frac{2 G m_2}{r}}
|
|
|
TODO |
|
|
| 5727578862 |
\frac{d^2}{dx^2} \psi(x) = -k^2 \psi(x)
|
|
|
TODO |
|
|
| 5732331610 |
W = G m_1 m_2 \left( \frac{1}{x} \bigg\rvert_{ r_{\rm Earth} }^{\infty} \right)
|
|
|
TODO |
2022-03-25 BHP: Conversion between Latex and Sympy is incomplete
|
|
| 5733146966 |
KE_2 - KE_1 = \frac{1}{2} m \left(v_2^2 - v_1^2\right)
|
|
|
TODO |
|
|
| 5733721198 |
d = \frac{1}{2} (v + v_0) \left( \frac{v - v_0}{a} \right)
|
|
|
TODO |
|
|
| 5763749235 |
-c^2 + c^2 \gamma^2 = v^2 \gamma^2
|
|
|
TODO |
|
|
| 5770088141 |
r
|
|
|
TODO |
|
|
| 5775658332 |
2
|
|
|
TODO |
|
|
| 5778176146 |
t
|
|
|
TODO |
|
|
| 5779256336 |
W_{\rm by\ system} = KE_{\rm final} - KE_{\rm initial}
|
|
|
TODO |
|
|
| 5781435087 |
g
|
|
|
TODO |
|
|
| 5781981178 |
x^2 - y^2 = (x+y)(x-y)
|
|
difference of squares |
TODO |
Difference_of_two_squares
|
|
| 5787469164 |
1 - \gamma^2
|
|
|
TODO |
|
|
| 5789289057 |
v = \alpha c \sqrt{ \frac{m_e}{2 m} }
|
|
|
TODO |
equation 4 in the PDF
|
|
| 5799753649 |
2
|
|
|
TODO |
|
|
| 5803210729 |
PE_2
|
|
|
TODO |
|
|
| 5832984291 |
(\sin(x))^2 + (\cos(x))^2 = 1
|
|
|
TODO |
|
|
| 5838268428 |
\alpha c = \frac{1}{4 \pi \epsilon_0} \frac{e^2}{\hbar}
|
|
|
TODO |
|
|
| 5846177002 |
t
|
|
|
TODO |
|
|
| 5846639423 |
v_{\rm final} = \sqrt{\frac{2 G m_2}{r}}
|
|
|
TODO |
|
|
| 5850144586 |
W_{\rm by\ system} = KE_{\rm final}
|
|
|
TODO |
|
|
| 5857434758 |
\int a dx = a x
|
|
|
TODO |
|
|
| 5866629429 |
{\rm sech}^2\ x + \tanh^2(x) = 1
|
|
|
TODO |
|
|
| 5868688585 |
\frac{-\hbar^2}{2m} \nabla^2 \psi \left( \vec{r},t \right) = \frac{p^2}{2m} \psi( \vec{r},t)
|
|
|
TODO |
representing-laplace-operator-nabla-in.html
|
|
| 5868731041 |
v_0
|
|
|
TODO |
|
|
| 5890617067 |
R
|
|
|
TODO |
|
|
| 5900595848 |
k = \frac{\omega}{v}
|
|
|
TODO |
|
|
| 5902985919 |
\vec{F} = G \frac{m_1 m_2}{x^2} \hat{x}
|
|
Newton's law of universal gravitation |
TODO |
|
|
| 5904227750 |
m
|
|
|
TODO |
|
|
| 5928285821 |
x^2 + 2 x (b/(2 a)) + (b/(2 a))^2 = (x + (b/(2 a)))^2
|
|
|
TODO |
|
|
| 5928292841 |
x^2 + (b/a)x + (b/(2 a))^2 = -c/a + (b/(2 a))^2
|
|
|
TODO |
|
|
| 5938459282 |
x^2 + (b/a)x = -c/a
|
|
|
TODO |
|
|
| 5945893986 |
\frac{d^2 x}{dt^2} = -A \omega^2 \cos(\omega t)
|
|
|
TODO |
|
|
| 5958392859 |
x^2 + (b/a)x+(c/a) = 0
|
|
|
TODO |
|
|
| 5959282914 |
x^2 + x(b/a) + (b/(2 a))^2 = (x+(b/(2 a)))^2
|
|
|
TODO |
|
|
| 5960438249 |
E_1
|
|
|
TODO |
|
|
| 5962145508 |
\alpha = \frac{nR}{VP}
|
|
|
TODO |
|
|
| 5978756813 |
W = G m_{\rm Earth} m \left( 0 - \frac{-1}{ r_{\rm Earth}} \right)
|
|
|
TODO |
|
|
| 5982958248 |
x = -\sqrt{(b/(2 a))^2 - (c/a)}-(b/(2 a))
|
|
|
TODO |
|
|
| 5982958249 |
x+(b/(2 a)) = -\sqrt{(b/(2 a))^2 - (c/a)}
|
|
|
TODO |
|
|
| 5985371230 |
\vec{ \nabla} \psi( \vec{r},t) = \frac{i}{\hbar} \vec{p} \psi( \vec{r},t)
|
|
|
TODO |
|
|
| 6023986360 |
x
|
|
|
TODO |
|
|
| 6026694087 |
F_{centripetal} = m \frac{v^2}{r}
|
|
|
TODO |
|
|
| 6031385191 |
\sinh^2 x = \left(\frac{\exp(x) - \exp(-x)}{2}\right)\left(\frac{\exp(x) - \exp(-x)}{2}\right)
|
|
|
TODO |
|
|
| 6038673136 |
v
|
|
|
TODO |
|
|
| 6050070428 |
v_{0, x}
|
|
|
TODO |
|
|
| 6055078815 |
\left(\frac{\partial U}{\partial T}\right)_p = C_V \left(\frac{\partial T}{\partial T}\right)_p + \pi_T \left( \frac{\partial V}{\partial T} \right)_p
|
|
|
TODO |
constant pressure
|
|
| 6061695358 |
V_2 = I R_2
|
|
|
TODO |
|
|
| 6083821265 |
v_0 \cos(\theta) = v_{0, x}
|
|
|
TODO |
|
|
| 6091977310 |
KE_{\rm initial} = \frac{1}{2} m_1 v_{\rm initial}^2
|
|
|
TODO |
|
|
| 6098638221 |
y_0
|
|
|
TODO |
|
|
| 6131764194 |
W = G m_{\rm Earth} m \left( \frac{1}{x^2} \bigg\rvert_{ r_{\rm Earth} }^{\infty} \right)
|
|
|
TODO |
evaluating-definite-integrals-for.html
|
|
| 6134836751 |
v_{0, x} = v_x
|
|
|
TODO |
|
|
| 6158970683 |
PE_1
|
|
|
TODO |
|
|
| 6175547907 |
v_{\rm average} = \frac{v + v_0}{2}
|
|
|
TODO |
|
|
| 6204539227 |
-g t + v_{0, y} = \frac{dy}{dt}
|
|
|
TODO |
|
|
| 6238632840 |
r T_{\rm orbit}^2
|
|
|
TODO |
|
|
| 6239815585 |
C_{\rm Earth\ orbit}
|
|
|
TODO |
|
|
| 6240206408 |
I_{\rm incoherent} = |A|^2 + |B|^2
|
|
|
TODO |
|
|
| 6240546932 |
\frac{1}{K_{equilibrium}} = \frac{k_{\rm desorption}}{k_{\rm adsorption}}
|
|
|
TODO |
|
|
| 6259833695 |
A
|
|
|
TODO |
|
|
| 6268336290 |
F_{gravitational} = \frac{m}{r}\left(\frac{2\pi r}{T}\right)^2
|
|
|
TODO |
|
|
| 6281834543 |
m_1
|
|
|
TODO |
|
|
| 6296166842 |
P
|
|
|
TODO |
|
|
| 6306552185 |
I = (A + B)(A^* + B^*)
|
|
|
TODO |
|
|
| 6346902704 |
1
|
|
|
TODO |
|
|
| 6348260313 |
C_{\rm Earth\ orbit} = 2 \pi r_{\rm Earth\ orbit}
|
|
|
TODO |
|
|
| 6353701615 |
\theta_{\rm refracted}
|
|
|
TODO |
|
|
| 6383056612 |
KE
|
|
|
TODO |
|
|
| 6397683463 |
V \alpha = \left( \frac{\partial V}{\partial T} \right)_p
|
|
|
TODO |
|
|
| 6404535647 |
\cosh x = \frac{\exp(x) + \exp(-x)}{2}
|
|
|
TODO |
|
|
| 6408214498 |
c^2
|
|
|
TODO |
|
|
| 6410818363 |
\theta
|
|
|
TODO |
|
|
| 6417359412 |
v_0
|
|
|
TODO |
|
|
| 6421241247 |
d = v t - \frac{1}{2} a t^2
|
|
|
TODO |
|
|
| 6450985774 |
n_1 \sin( \theta_1 ) = n_2 \sin( \theta_2 )
|
|
Law of Refraction |
TODO |
eq 34-44 on page 819 in \cite{2001_HRW}
|
|
| 6457044853 |
v - a t = v_0
|
|
|
TODO |
|
|
| 6457999644 |
\frac{[S_0]}{[A_{\rm adsorption}]} = \frac{1}{K_{\rm equilibrium}} \frac{1}{p_A} + 1
|
|
|
TODO |
|
|
| 6463266449 |
t_f
|
|
|
TODO |
|
|
| 6498985149 |
v_{\rm escape}
|
|
|
TODO |
|
|
| 6504442697 |
v = \sqrt{ \frac{K}{\rho} }
|
|
|
TODO |
|
|
| 6529120965 |
B
|
|
|
TODO |
|
|
| 6529793063 |
I_{\rm incoherent} = |A|^2 + |A|^2
|
|
|
TODO |
|
|
| 6535639720 |
r_{\rm Earth}
|
|
|
TODO |
|
|
| 6546594355 |
R_{\rm total}
|
|
|
TODO |
|
|
| 6554292307 |
t
|
|
|
TODO |
|
|
| 6555185548 |
A^* = |A| \exp(-i \theta)
|
|
|
TODO |
|
|
| 6556875579 |
\frac{I_{\rm coherent}}{I_{\rm incoherent}} = 2
|
|
|
TODO |
|
|
| 6572039835 |
-g t + v_{0, y} = v_y
|
|
|
TODO |
|
|
| 6599829782 |
v_{\rm final}
|
|
|
TODO |
|
|
| 6672141531 |
dt
|
|
|
TODO |
|
|
| 6681646197 |
v
|
|
|
TODO |
|
|
| 6701855578 |
v_2
|
|
|
TODO |
|
|
| 6715248283 |
PE = -F x
|
|
potential energy |
TODO |
Potential_energy
|
|
| 6729698807 |
v_0
|
|
|
TODO |
|
|
| 6732786762 |
t
|
|
|
TODO |
|
|
| 6742123016 |
\vec{p}_{electron}\cdot\vec{p}_{electron} = ( \vec{p}_{1}\cdot\vec{p}_{1})+( \vec{p}_{2}\cdot\vec{p}_{2})-2( \vec{p}_{1}\cdot\vec{p}_{2})
|
|
|
TODO |
|
|
| 6749533119 |
PE_1
|
|
|
TODO |
|
|
| 6753224061 |
I_{\rm total} = I_1 + I_2
|
|
|
TODO |
|
|
| 6774684564 |
\theta = \phi
|
|
|
TODO |
for coherent waves
|
|
| 6783009163 |
r_{\rm adsorption} = r_{\rm desorption}
|
|
|
TODO |
|
|
| 6785303857 |
C = 2 \pi r
|
|
|
TODO |
|
|
| 6800170830 |
r_{\rm Schwarzschild} = \frac{2 G m}{c^2}
|
|
|
TODO |
|
|
| 6829281943 |
F_{\rm centripetal} = G \frac{m_1 m_2}{r^2}
|
|
|
TODO |
|
|
| 6831637424 |
\sin( 90^{\circ} - \theta_{\rm Brewster} ) = \cos( \theta_{\rm Brewster} )
|
|
|
TODO |
|
|
| 6831694380 |
a = \frac{d^2 x}{dt^2}
|
|
acceleration |
TODO |
|
|
| 6838659900 |
KE_2
|
|
|
TODO |
|
|
| 6870322215 |
KE_{\rm escape} = \frac{1}{2} m v_{\rm escape}^2
|
|
|
TODO |
|
|
| 6885625907 |
\exp(i \pi) = -1 + i 0
|
|
|
TODO |
|
|
| 6892595652 |
\frac{1}{2} m_1 v_{\rm final}^2 = \frac{G m_1 m_2}{r}
|
|
|
TODO |
|
|
| 6908055431 |
x(t) = A \cos\left(\frac{k}{m} t\right)
|
|
|
TODO |
|
|
| 6925244346 |
\alpha = \frac{PV}{T} \frac{1}{VP}
|
|
|
TODO |
|
|
| 6935745841 |
F = G \frac{m_1 m_2}{x^2}
|
|
Newton's law of universal gravitation |
TODO |
Newton%27s_law_of_universal_gravitation#Modern_form
|
|
| 6946088325 |
v = \frac{C}{t}
|
|
|
TODO |
|
|
| 6955192897 |
r_{\rm desorption} = k_{\rm desorption} [A_{\rm adsorption}]
|
|
|
TODO |
|
|
| 6964468708 |
KE_1
|
|
|
TODO |
|
|
| 6974054946 |
\frac{1}{2} g t_f
|
|
|
TODO |
|
|
| 6976493023 |
x
|
|
|
TODO |
|
|
| 6998364753 |
v_{\rm Earth\ orbit} = \frac{2 \pi \left( 1.496\ 10^8 {\rm km} \right)}{3.16\ 10^7 {\rm seconds}}
|
|
|
TODO |
|
|
| 7002609475 |
\frac{V}{R_2} = I_2
|
|
|
TODO |
|
|
| 7010294143 |
T_{\rm orbit}^2 G m_{\rm Earth} = 4 \pi^2 r^3
|
|
|
TODO |
|
|
| 7011114072 |
d = \frac{(v_0 + a t) + v_0}{2} t
|
|
|
TODO |
|
|
| 7049769409 |
2
|
|
|
TODO |
|
|
| 7053449926 |
r_{\rm geostationary\ orbit}
|
|
|
TODO |
|
|
| 7057864873 |
y' = y
|
|
|
TODO |
frame of reference is moving only along x direction
|
|
| 7083390553 |
t
|
|
|
TODO |
|
|
| 7107090465 |
B B^* = |B|^2
|
|
|
TODO |
|
|
| 7112613117 |
m_{\rm Earth} = \frac{(9.80665 m/s^2) r_{\rm Earth}^2}{6.67430*10^{-11}m^3 kg^{-1} s^{-2}}
|
|
|
TODO |
|
|
| 7112646057 |
v_{\rm final}^2 = \frac{2 G m_2}{r}
|
|
|
TODO |
|
|
| 7140470627 |
m
|
|
|
TODO |
|
|
| 7154592211 |
\theta_2
|
|
|
TODO |
|
|
| 7159989263 |
i x
|
|
|
TODO |
|
|
| 7175416299 |
t_{\rm Earth\ orbit} = 1 {\rm year}
|
|
|
TODO |
|
|
| 7191277455 |
R
|
|
|
TODO |
|
|
| 7194432406 |
r_{\rm Schwarzschild}
|
|
|
TODO |
|
|
| 7214442790 |
x
|
|
|
TODO |
|
|
| 7215099603 |
v^2 = v_0^2 + 2 a t v_0 + a^2 t^2
|
|
|
TODO |
|
|
| 7217021879 |
R_{\rm total} = R_1 + R_2
|
|
|
TODO |
|
|
| 7233558441 |
d = v_0 t_f \cos(\theta)
|
|
|
TODO |
|
|
| 7252338326 |
v_y = \frac{dy}{dt}
|
|
|
TODO |
|
|
| 7263534144 |
c^2
|
|
|
TODO |
|
|
| 7267155233 |
\frac{PE_2 - PE_1}{t} = -F \left( \frac{x_2 - x_1}{t} \right)
|
|
|
TODO |
|
|
| 7267424860 |
\frac{1}{\theta_A} = \frac{1+(K_{\rm equilibrium}\ p_A)}{K_{\rm equilibrium}\ p_A}
|
|
|
TODO |
|
|
| 7321695558 |
\theta_{\rm Brewster}
|
|
|
TODO |
|
|
| 7326066466 |
G
|
|
|
TODO |
|
|
| 7337056406 |
\gamma^2 x
|
|
|
TODO |
|
|
| 7354529102 |
y = - \frac{1}{2} g \left( \frac{x - x_0}{v_{0, x}} \right)^2 + v_{0, y} \frac{x - x_0}{v_{0, x}} + y_0
|
|
|
TODO |
|
|
| 7375348852 |
\theta_{\rm Brewster}
|
|
|
TODO |
|
|
| 7376526845 |
\sin(\theta) = \frac{v_{0, y}}{v_0}
|
|
|
TODO |
|
|
| 7391837535 |
\cos(\theta) = \frac{v_{0, x}}{v_0}
|
|
|
TODO |
|
|
| 7410124465 |
R_{\rm total}
|
|
|
TODO |
|
|
| 7410526982 |
2/m_1
|
|
|
TODO |
|
|
| 7445388869 |
-1
|
|
|
TODO |
|
|
| 7453225570 |
x
|
|
|
TODO |
|
|
| 7455581657 |
v_{0, x} = \frac{dx}{dt}
|
|
|
TODO |
|
|
| 7466829492 |
\vec{ \nabla} \cdot \vec{E} = 0
|
|
|
TODO |
|
|
| 7473576008 |
\frac{-1}{A \cos(\omega t)}
|
|
|
TODO |
|
|
| 7476820482 |
C
|
|
|
TODO |
|
|
| 7497687256 |
V
|
|
|
TODO |
|
|
| 7513513483 |
\gamma^2 (c^2 - v^2) = c^2
|
|
|
TODO |
|
|
| 7517073655 |
[S_0] = \left(\frac{1}{K_{\rm equilibrium}} \frac{1}{p_A} + 1\right)[A_{\rm adsorption}]
|
|
|
TODO |
|
|
| 7556442438 |
4 \pi^2
|
|
|
TODO |
|
|
| 7560908617 |
m
|
|
|
TODO |
|
|
| 7564010952 |
-1
|
|
|
TODO |
|
|
| 7564894985 |
\int \cos\left(\frac{2n\pi}{W} x\right) dx = \frac{W}{2n\pi}\sin\left(\frac{2n\pi}{W} x\right)
|
|
|
TODO |
|
|
| 7572664728 |
\cos(2 x) + 2 (\sin(x))^2 = 1
|
|
|
TODO |
|
|
| 7573835180 |
PE_{\rm Earth\ surface} = -W
|
|
|
TODO |
the potential energy at the surface of the Earth is equal to the work needed to get it from the center of the Earth to the surface
|
|
| 7575738420 |
\left(\sin\left(\frac{n \pi}{W}x\right) \right)^2 = \frac{1-\cos\left(2\frac{n \pi}{W}x\right)}{2}
|
|
|
TODO |
|
|
| 7575859295 |
\vec{ \nabla} \times \vec{ \nabla} \times \vec{E} = \vec{ \nabla}( \vec{ \nabla} \cdot \vec{E} - \nabla^2 \vec{E})
|
|
|
TODO |
|
|
| 7575859300 |
\epsilon^{i,j,k} \hat{x}_i \nabla_j ( \vec{ \nabla} \times \vec{E} )_k = \vec{ \nabla}( \vec{ \nabla} \cdot \vec{E} - \nabla^2 \vec{E})
|
|
|
TODO |
|
|
| 7575859302 |
\epsilon^{i,j,k} \epsilon_{n,j,k} \hat{x}_i \nabla_j \nabla^m E^n = \vec{ \nabla}( \vec{ \nabla} \cdot \vec{E} - \nabla^2 \vec{E})
|
|
|
TODO |
|
|
| 7575859304 |
\epsilon^{i,j,k} \epsilon_{n,j,k} = \delta^{l}_{\ \ j} \delta^{m}_{\ \ k} - \delta^{l}_{\ \ k} \delta^{m}_{\ \ h}
|
|
|
TODO |
Covariance_and_contravariance_of_vectors
|
|
| 7575859306 |
\left( \delta^{l}_{\ \ j} \delta^{m}_{\ \ k} - \delta^{l}_{\ \ k} \delta^{m}_{\ \ h} \right) \hat{x}_i \nabla_j \nabla^m E^n = \vec{ \nabla}( \vec{ \nabla} \cdot \vec{E} - \nabla^2 \vec{E})
|
|
|
TODO |
Covariance_and_contravariance_of_vectors
|
|
| 7575859308 |
\left( \delta^{l}_{\ \ j} \delta^{m}_{\ \ k} \hat{x}_i \nabla_j \nabla^m E^n\right)-\left( \delta^{l}_{\ \ k} \delta^{m}_{\ \ h} \hat{x}_i \nabla_j \nabla^m E^n \right) = \vec{ \nabla}( \vec{ \nabla} \cdot \vec{E} - \nabla^2 \vec{E})
|
|
|
TODO |
Covariance_and_contravariance_of_vectors
|
|
| 7575859310 |
\hat{x}_m \nabla_n \nabla^m E^n - \hat{x}_n \nabla_m \nabla^m E^n = \vec{ \nabla}( \vec{ \nabla} \cdot \vec{E} - \nabla^2 \vec{E})
|
|
|
TODO |
|
|
| 7575859312 |
\vec{ \nabla}( \vec{ \nabla} \cdot \vec{E} - \nabla^2 \vec{E}) = \vec{ \nabla}( \vec{ \nabla} \cdot \vec{E} - \nabla^2 \vec{E})
|
|
|
TODO |
|
|
| 7587034465 |
\theta
|
|
|
TODO |
|
|
| 7607271250 |
\theta
|
|
|
TODO |
|
|
| 7621705408 |
I = |A|^2 + |B|^2 + |A| |B| \exp(-i \theta) \exp(i \phi) + |A| |B| \exp(i \theta) \exp(-i \phi)
|
|
|
TODO |
|
|
| 7630953440 |
\frac{K_{\rm equilibrium} p_A}{K_{\rm equilibrium} p_A}
|
|
|
TODO |
|
|
| 7652131521 |
\frac{dx}{dt} = -A \omega \sin (\omega t)
|
|
|
TODO |
|
|
| 7672365885 |
F_{gravitational} = \frac{4 \pi^2 m r}{T^2}
|
|
|
TODO |
|
|
| 7675171493 |
V_1 = I R_1
|
|
|
TODO |
|
|
| 7676652285 |
KE_2 = \frac{1}{2} m v_2^2
|
|
|
TODO |
|
|
| 7696214507 |
n_1 \sin( \theta_{\rm Brewster} ) = n_2 \sin( 90^{\circ} - \theta_{\rm Brewster} )
|
|
|
TODO |
|
|
| 7701249282 |
v_u = \alpha c \sqrt{ \frac{m_e}{m_p} }
|
|
|
TODO |
when A = 1
|
|
| 7708501762 |
C_{\rm Earth\ orbit}
|
|
|
TODO |
|
|
| 7729413831 |
a_x \hat{x} + a_y \hat{y} = \frac{d}{dt} \left(v_x \hat{x} + v_y \hat{y} \right)
|
|
|
TODO |
|
|
| 7731226616 |
{\rm sech}\ x = \frac{1}{\cosh x}
|
|
|
TODO |
|
|
| 7734996511 |
PE_2 - PE_1 = -F ( x_2 - x_1 )
|
|
|
TODO |
|
|
| 7735731560 |
\cosh^2 x - \sinh^2 x = \frac{1}{4}\left( \exp(2x)+1+1+\exp(-2x) - \left(\exp(2x)-1-1-\exp(-2x)\right) \right)
|
|
|
TODO |
|
|
| 7735737409 |
\frac{KE_2 - KE_1}{t} = m v \frac{ v_2 - v_1 }{t}
|
|
|
TODO |
|
|
| 7741202861 |
x = \gamma^2 x - \gamma^2 v t + \gamma v t'
|
|
|
TODO |
|
|
| 7743841045 |
\gamma^2
|
|
|
TODO |
|
|
| 7749253510 |
W = G \frac{m_{\rm Earth} m }{ r_{\rm Earth}}
|
|
|
TODO |
|
|
| 7774819339 |
R
|
|
|
TODO |
|
|
| 7798615279 |
I_{\rm total}
|
|
|
TODO |
|
|
| 7816982139 |
m/s^2
|
|
|
TODO |
|
|
| 7819443873 |
r
|
|
|
TODO |
|
|
| 7826132469 |
\left(\frac{\partial U}{\partial T}\right)_p = C_V + \pi_T V \alpha
|
|
|
TODO |
|
|
| 7837519722 |
v = \sqrt{f} \sqrt{\frac{E}{m}}
|
|
|
TODO |
|
|
| 7844317489 |
I
|
|
|
TODO |
|
|
| 7846240076 |
m_{\rm Earth} = \frac{(9.80665 m/s^2) r_{\rm Earth}^2}{G}
|
|
|
TODO |
|
|
| 7857757625 |
n_1
|
|
|
TODO |
|
|
| 7875206161 |
E_2 = KE_2 + PE_2
|
|
|
TODO |
|
|
| 7882872592 |
W_{\rm to\ system} = \int_{\infty}^r \vec{F}\cdot d\vec{r}
|
|
|
TODO |
|
|
| 7905984866 |
m_1
|
|
|
TODO |
|
|
| 7906112355 |
\gamma^2 = \frac{c^2}{c^2 - \gamma^2}
|
|
|
TODO |
|
|
| 7912578203 |
v
|
|
|
TODO |
|
|
| 7917051060 |
\vec{p}_{electron} = \vec{p}_{1}-\vec{p}_{2}
|
|
|
TODO |
|
|
| 7924063906 |
K_{equilibrium} = \frac{k_{\rm adsorption}}{k_{\rm desorption}}
|
|
|
TODO |
|
|
| 7924842770 |
T
|
|
|
TODO |
|
|
| 7928111771 |
\frac{1}{\theta_A} = \frac{1}{K_{\rm equilibrium} p_A} + 1
|
|
|
TODO |
|
|
| 7935917166 |
r_{\rm Earth}
|
|
|
TODO |
|
|
| 7939765107 |
v^2 = v_0^2 + 2 a d
|
|
|
TODO |
|
|
| 7939947931 |
KE_2
|
|
|
TODO |
|
|
| 8014566709 |
\gamma^2 v t
|
|
|
TODO |
|
|
| 8020058613 |
r
|
|
|
TODO |
|
|
| 8044416349 |
d_2
|
|
|
TODO |
|
|
| 8046208134 |
I_{\rm coherent} = |A|^2 + |A|^2 + |A| |A| 2
|
|
|
TODO |
|
|
| 8049905441 |
\Delta KE = KE_{\rm final} - KE_{\rm initial}
|
|
change in kinetic energy |
TODO |
|
|
| 8059639673 |
v^2 = \frac{4 \pi^2 r^2}{T_{\rm orbit}^2}
|
|
|
TODO |
|
|
| 8061701434 |
PE_1
|
|
|
TODO |
|
|
| 8065128065 |
I = A A^* + B B^* + A B^* + B A^*
|
|
|
TODO |
|
|
| 8066819515 |
v
|
|
|
TODO |
|
|
| 8072682558 |
x_0
|
|
|
TODO |
|
|
| 8090924099 |
v = \sqrt{ \left( f\frac{E}{a^3} \right) \frac{1}{\rho} }
|
|
|
TODO |
|
|
| 8106885760 |
\alpha = \frac{1}{4 \pi \epsilon_0} \frac{e^2}{\hbar c}
|
|
|
TODO |
fine structure constant definition
|
|
| 8111389082 |
x
|
|
|
TODO |
|
|
| 8120663858 |
y_f
|
|
|
TODO |
|
|
| 8122039815 |
\frac{d_1+d_2}{d_1+d_2}
|
|
|
TODO |
|
|
| 8131665171 |
\frac{1}{\theta_A} = \frac{[S_0]}{[A_{\rm adsorption}]}
|
|
|
TODO |
|
|
| 8135396036 |
t
|
|
|
TODO |
|
|
| 8139187332 |
\vec{p}_{1} = \vec{p}_{2}+\vec{p}_{electron}
|
|
|
TODO |
|
|
| 8145337879 |
-g t dt + v_{0, y} dt = dy
|
|
|
TODO |
|
|
| 8162179726 |
k_{\rm adsorption} p_A
|
|
|
TODO |
|
|
| 8173074178 |
x
|
|
|
TODO |
|
|
| 8198310977 |
0 = - \frac{1}{2} g t_f^2 + v_0 t_f \sin(\theta) + y_0
|
|
|
TODO |
|
|
| 8228733125 |
a_y = \frac{d}{dt} v_y
|
|
|
TODO |
|
|
| 8257621077 |
\vec{p}_{\rm before} = \vec{p}_{1}
|
|
|
TODO |
|
|
| 8269198922 |
2 a d = v^2 - v_0^2
|
|
|
TODO |
|
|
| 8283354808 |
I_{\rm coherent} = |A|^2 + |B|^2 + |A| |B| 2 \cos( 0 )
|
|
|
TODO |
|
|
| 8311458118 |
\vec{p}_{\rm after} = \vec{p}_{2}+\vec{p}_{electron}
|
|
|
TODO |
|
|
| 8332931442 |
\exp(i \pi) = \cos(\pi)+i \sin(\pi)
|
|
|
TODO |
|
|
| 8357234146 |
KE = \frac{1}{2} m v^2
|
|
kinetic energy |
TODO |
Kinetic_energy
|
|
| 8360117126 |
\gamma = \frac{-1}{\sqrt{1-\frac{v^2}{c^2}}}
|
|
|
TODO |
not a physically valid result in this context
|
|
| 8361238989 |
a_{centripetal} = \frac{v^2}{r}
|
|
|
TODO |
|
|
| 8362338572 |
v_{\rm escape}
|
|
|
TODO |
|
|
| 8368984890 |
\kappa_T = \frac{-1}{V} \left( \frac{ \partial }{\partial P}\left(\frac{nRT}{P}\right) \right)_T
|
|
|
TODO |
|
|
| 8396997949 |
I = | A + B |^2
|
|
|
TODO |
intensity of two waves traveling opposite directions on same path
|
|
| 8399484849 |
\langle x^2 - 2 x \langle x \rangle + \langle x \rangle^2 \rangle = \langle x^2 \rangle-\langle x \rangle^2
|
|
|
TODO |
|
|
| 8405272745 |
W_{\rm to\ system} = -G m_1 m_2\int_{\infty}^r \frac{1}{x^2} dx
|
|
|
TODO |
|
|
| 8406170337 |
y
|
|
|
TODO |
|
|
| 8416464049 |
KE_{\rm escape}
|
|
|
TODO |
|
|
| 8418527415 |
\sin(i x) = i \sinh(x)
|
|
|
TODO |
|
|
| 8435841627 |
P V = n R T
|
|
|
TODO |
Ideal_gas_law
|
|
| 8460820419 |
v_x = \frac{dx}{dt}
|
|
|
TODO |
|
|
| 8483686863 |
\sin(2 x) = \frac{1}{2i}\left(\exp(i 2 x)-\exp(-i 2 x) \right)
|
|
|
TODO |
|
|
| 8484544728 |
-a k^2\sin(k x) + -b k^2\cos(k x) = -a k^2 \sin(kx) + -b k^2 \cos(k x)
|
|
|
TODO |
|
|
| 8485757728 |
a \frac{d^2}{dx^2}\sin(kx) + b \frac{d^2}{dx^2}\cos(k x) = -a k^2 \sin(kx) + -b k^2 \cos(kx)
|
|
|
TODO |
|
|
| 8485867742 |
\frac{2}{W} = a^2
|
|
|
TODO |
|
|
| 8486706976 |
v_{0, x} t + x_0 = x
|
|
|
TODO |
|
|
| 8489593958 |
d(u v) = u dv + v du
|
|
|
TODO |
|
|
| 8489593960 |
d(u v) - v du = u dv
|
|
|
TODO |
|
|
| 8489593962 |
u dv = d(u v) - v du
|
|
|
TODO |
|
|
| 8489593964 |
\int u dv = u v - \int v du
|
|
|
TODO |
|
|
| 8494839423 |
\nabla^2 \vec{E} = \mu_0 \epsilon_0 \frac{\partial^2 \vec{E}}{\partial t^2}
|
|
|
TODO |
|
|
| 8495187962 |
\theta_{\rm Brewster} = \arctan{ \left( \frac{ n_1 }{ n_2 } \right) }
|
|
|
TODO |
|
|
| 8497631728 |
I = |A|^2 + |B|^2 + |A| |B| 2 \cos( \theta - \phi )
|
|
|
TODO |
|
|
| 8515803375 |
z' = z
|
|
|
TODO |
frame of reference is moving only along x direction
|
|
| 8532702080 |
\cosh^2 x = \left(\frac{\exp(x) + \exp(-x)}{2}\right)\left(\frac{\exp(x) + \exp(-x)}{2}\right)
|
|
|
TODO |
|
|
| 8552710882 |
KE_{\rm final} = \frac{1}{2} m_1 v_{\rm final}^2
|
|
|
TODO |
|
|
| 8558338742 |
E_2 = E_1
|
|
conservation of energy |
TODO |
Conservation_of_energy
|
|
| 8563535636 |
\cosh^2 x - \sinh^2 x = \left(\frac{\exp(x) + \exp(-x)}{2}\right)\left(\frac{\exp(x) + \exp(-x)}{2}\right) - \left(\frac{\exp(x) - \exp(-x)}{2}\right)\left(\frac{\exp(x) - \exp(-x)}{2}\right)
|
|
|
TODO |
|
|
| 8571466509 |
c^2 - \gamma^2
|
|
|
TODO |
|
|
| 8572657110 |
1 = \int |\psi(x)|^2 dx
|
|
|
TODO |
|
|
| 8572852424 |
\vec{E} = E( \vec{r},t)
|
|
|
TODO |
|
|
| 8575746378 |
\int \frac{1}{2} dx = \frac{1}{2} x
|
|
|
TODO |
|
|
| 8575748999 |
\frac{d^2}{dx^2} \left(a \sin(k x) + b \cos(k x) \right) = -k^2 \left(a \sin(kx) + b \cos(kx) \right)
|
|
|
TODO |
|
|
| 8576785890 |
1 = \int_0^W a^2 \frac{1-\cos\left(2\frac{n \pi}{W}x\right)}{2} dx
|
|
|
TODO |
|
|
| 8577275751 |
0 = a \sin(0) + b\cos(0)
|
|
|
TODO |
|
|
| 8582885111 |
\psi(x) = a \sin(kx) + b \cos(kx)
|
|
|
TODO |
|
|
| 8582954722 |
x^2 + 2 x h + h^2 = (x + h)^2
|
|
|
TODO |
|
|
| 8584698994 |
-g \int dt = \int d v_y
|
|
|
TODO |
|
|
| 8588429722 |
\sin( 90^{\circ} - x ) = \cos( x )
|
|
|
TODO |
|
|
| 8602221482 |
\langle \cos(\theta - \phi) \rangle = 0
|
|
|
TODO |
incoherent light source
|
|
| 8602512487 |
\vec{a} = a_x \hat{x} + a_y \hat{y}
|
|
|
TODO |
decompose acceleration into two components
|
|
| 8604483515 |
dW = G \frac{m_1 m_2}{x^2} dx
|
|
|
TODO |
|
|
| 8607458157 |
dt
|
|
|
TODO |
|
|
| 8642992037 |
2
|
|
|
TODO |
|
|
| 8651044341 |
\cos(i x) = \frac{1}{2} \left( \exp(-x) + \exp(x) \right)
|
|
|
TODO |
|
|
| 8655294002 |
a = -\frac{k}{m}x
|
|
|
TODO |
|
|
| 8661803554 |
F = G \frac{m_{\rm Earth} m}{r_{\rm Earth}^2}
|
|
|
TODO |
|
|
| 8688588981 |
a^3 \rho = m
|
|
|
TODO |
|
|
| 8699789241 |
2 \sin(x) \cos(x) = \frac{1}{2 i} \left( \exp(i 2 x) - 1 + 1 - \exp(-i 2 x) \right)
|
|
|
TODO |
|
|
| 8706092970 |
d = \left(\frac{v + v_0}{2}\right)t
|
|
|
TODO |
|
|
| 8710504862 |
A
|
|
|
TODO |
|
|
| 8717193282 |
dt
|
|
|
TODO |
|
|
| 8721295221 |
t_{\rm Earth\ orbit} = 3.16 10^7 {\rm seconds}
|
|
|
TODO |
|
|
| 8730201316 |
\frac{\gamma x (1 - \gamma^2 )}{\gamma^2 v} + \gamma t = t'
|
|
|
TODO |
first term was multiplied by \gamma/\gamma
|
|
| 8747785338 |
\cos(i x) = \cosh(x)
|
|
|
TODO |
|
|
| 8750379055 |
0 = \frac{d}{dt} v_x
|
|
|
TODO |
|
|
| 8808860551 |
-g \int t dt + v_{0, y} \int dt = \int dy
|
|
|
TODO |
|
|
| 8849289982 |
\psi(x)^* = a \sin(\frac{n \pi}{W} x)
|
|
|
TODO |
|
|
| 8854422847 |
dT
|
|
|
TODO |
|
|
| 8857931498 |
c
|
|
|
TODO |
|
|
| 8865085668 |
t
|
|
|
TODO |
|
|
| 8871333437 |
PE_{\rm Earth\ surface}
|
|
|
TODO |
|
|
| 8880467139 |
2
|
|
|
TODO |
|
|
| 8889444440 |
1 = \int_0^W a^2 \left(\sin\left(\frac{n \pi}{W} x\right) \right)^2 dx
|
|
|
TODO |
|
|
| 8908736791 |
\rho = \frac{m}{a^3}
|
|
|
TODO |
geometry
|
|
| 8916428651 |
m
|
|
|
TODO |
|
|
| 8922441655 |
d = \frac{v_0^2}{g} \sin(2 \theta)
|
|
|
TODO |
|
|
| 8945218208 |
\theta_{\rm Brewster} + \theta_{\rm refracted} = 90^{\circ}
|
|
|
TODO |
based on figure 34-27 on page 824 in \cite{2001_HRW}
|
|
| 8946383937 |
v_{\rm escape}^2 = 2 G \frac{m}{r}
|
|
|
TODO |
|
|
| 8949329361 |
v_0 \sin(\theta) = v_{0, y}
|
|
|
TODO |
|
|
| 8953094349 |
W = m a x
|
|
|
TODO |
|
|
| 8960645192 |
KE_2 + PE_2 = KE_1 + PE_1
|
|
|
TODO |
|
|
| 8991236357 |
\frac{d^2 x}{dt^2} = -\frac{k}{m} x
|
|
|
TODO |
|
|
| 9025853427 |
\theta_{\rm Brewster}
|
|
|
TODO |
|
|
| 9029795851 |
\theta_{\rm Brewster}
|
|
|
TODO |
|
|
| 9031609275 |
x (1 - \gamma^2 ) = - \gamma^2 v t + \gamma v t'
|
|
|
TODO |
|
|
| 9040079362 |
f
|
|
|
TODO |
|
|
| 9053099840 |
I
|
|
|
TODO |
|
|
| 9059289981 |
\psi(x) = a \sin(k x)
|
|
|
TODO |
|
|
| 9063568209 |
V_{\rm total} = V_1 + V_2
|
|
|
TODO |
|
|
| 9070394000 |
m_2 d_2 \frac{4 \pi^2}{T^2} = G \frac{m_1 m_2}{r^2}
|
|
|
TODO |
|
|
| 9070454719 |
v_0^2
|
|
|
TODO |
|
|
| 9072369552 |
m_{\rm Earth}
|
|
|
TODO |
|
|
| 9081138616 |
W_{\rm by\ system} = \frac{1}{2} m_1 v_{\rm final}^2
|
|
|
TODO |
|
|
| 9110536742 |
2 x
|
|
|
TODO |
|
|
| 9112191201 |
y_f = 0
|
|
|
TODO |
|
|
| 9152823411 |
\frac{1}{T^2} = \frac{1}{d_2 4 \pi^2} G \frac{m_1}{r^2}
|
|
|
TODO |
|
|
| 9170048197 |
T^2 = d_2 4 \pi^2 \frac{r^2}{G m_1}
|
|
|
TODO |
|
|
| 9174439158 |
R_1
|
|
|
TODO |
|
|
| 9180861128 |
2 \sin(x) \cos(x) = \frac{1}{2 i} \left( \exp(i 2 x) - \exp(-i 2 x) \right)
|
|
|
TODO |
|
|
| 9191880568 |
Z Z^* = |Z| |Z| \exp( -i \theta ) \exp( i \theta )
|
|
|
TODO |
|
|
| 9226945488 |
F = \frac{m v^2}{r}
|
|
Centripetal force |
TODO |
Centripetal_force
|
|
| 9243879541 |
V = I_2 R_2
|
|
|
TODO |
|
|
| 9262596735 |
d = 2 \pi r
|
|
|
TODO |
|
|
| 9285928292 |
ax^2 + bx + c = 0
|
|
|
TODO |
|
|
| 9291999979 |
\vec{ \nabla} \times \vec{ \nabla} \times \vec{E} = -\mu_0\vec{ \nabla} \times \frac{\partial \vec{H}}{\partial t}
|
|
|
TODO |
|
|
| 9294858532 |
\hat{A}^+ = \hat{A}
|
|
|
TODO |
|
|
| 9305761407 |
v
|
|
|
TODO |
|
|
| 9337785146 |
v = \frac{x_2 - x_1}{t}
|
|
average velocity |
TODO |
|
|
| 9341391925 |
\vec{v}_0 = v_{0, x} \hat{x} + v_{0, y} \hat{y}
|
|
|
TODO |
|
|
| 9346215480 |
T_{\rm orbit}
|
|
|
TODO |
|
|
| 9350663581 |
\pi
|
|
|
TODO |
|
|
| 9350720370 |
m
|
|
|
TODO |
|
|
| 9355039511 |
g
|
|
|
TODO |
|
|
| 9356924046 |
\frac{KE_2 - KE_1}{t} = m \frac{v_2 + v_1}{2} \frac{ v_2 - v_1 }{t}
|
|
|
TODO |
|
|
| 9370882921 |
KE_{\rm escape}
|
|
|
TODO |
|
|
| 9376481176 |
K = f \frac{E}{a^3}
|
|
|
TODO |
proportionality coefficient fvaries in the range 1-4 for a majority of elemental solids
|
|
| 9385938295 |
(x+(b/(2 a)))^2 = -(c/a) + (b/(2 a))^2
|
|
|
TODO |
|
|
| 9393939991 |
\psi(x) = -\sqrt{\frac{2}{W}} \sin\left(\frac{n \pi}{W} x\right)
|
|
|
TODO |
|
|
| 9393939992 |
\psi(x) = \sqrt{\frac{2}{W}} \sin\left(\frac{n \pi}{W} x\right)
|
|
|
TODO |
|
|
| 9394939493 |
\nabla^2 E( \vec{r},t) = \mu_0 \epsilon_0 \frac{\partial^2}{\partial t^2} E( \vec{r},t)
|
|
|
TODO |
|
|
| 9397152918 |
v = \frac{v_1 + v_2}{2}
|
|
average velocity |
TODO |
|
|
| 9407192813 |
G \frac{m_{\rm Earth} m}{r_{\rm Earth}^2} = m g_{\rm Earth}
|
|
|
TODO |
|
|
| 9409776983 |
x (1 - \gamma^2 ) + \gamma^2 v t = \gamma v t'
|
|
|
TODO |
|
|
| 9412953728 |
v_{\rm escape}^2 = 2 G \frac{m_{\rm Earth}}{r_{\rm Earth}}
|
|
|
TODO |
|
|
| 9413609246 |
\cosh^2 x - \sinh^2 x = 1
|
|
|
TODO |
|
|
| 9413699705 |
W = m a \frac{v_2^2 - v_1^2}{2 a}
|
|
|
TODO |
|
|
| 9429829482 |
\frac{d}{dx} y = -\sin(x) + i\cos(x)
|
|
|
TODO |
|
|
| 9440616166 |
m_{\rm Earth} = \frac{g_{\rm Earth} r_{\rm Earth}^2}{G}
|
|
|
TODO |
|
|
| 9482113948 |
\frac{dy}{y} = i dx
|
|
|
TODO |
|
|
| 9482438243 |
(\cos(x))^2 = \cos(2 x) + (\sin(x))^2
|
|
|
TODO |
|
|
| 9482923849 |
\exp(i x) = y
|
|
|
TODO |
|
|
| 9482928242 |
\cos(2 x) = (\cos(x))^2 - (\sin(x))^2
|
|
|
TODO |
|
|
| 9482928243 |
\cos(2 x) + (\sin(x))^2 = (\cos(x))^2
|
|
|
TODO |
|
|
| 9482943948 |
\log(y) = i dx
|
|
|
TODO |
|
|
| 9482984922 |
\frac{d}{dx} y = (i\sin(x) + \cos(x)) i
|
|
|
TODO |
|
|
| 9483928192 |
\cos(2 x) + i\sin(2 x) = (\cos(x))^2 + 2 i \cos(x) \sin(x) - (\sin(x))^2
|
|
|
TODO |
|
|
| 9485384858 |
\nabla^2 E( \vec{r})\exp(i \omega t) = - \frac{\omega^2}{c^2} E( \vec{r})\exp(i \omega t)
|
|
|
TODO |
|
|
| 9485747245 |
\sqrt{\frac{2}{W}} = a
|
|
|
TODO |
|
|
| 9485747246 |
-\sqrt{\frac{2}{W}} = a
|
|
|
TODO |
|
|
| 9492920340 |
y = \cos(x)+i \sin(x)
|
|
|
TODO |
|
|
| 9495857278 |
\psi(x=W) = 0
|
|
|
TODO |
2022-03-25 BHP: Conversion between Latex and Sympy is incomplete
|
|
| 9499428242 |
E( \vec{r},t) = E( \vec{r})\exp(i \omega t)
|
|
|
TODO |
|
|
| 9510328252 |
KE_{\rm initial} = 0
|
|
|
TODO |
|
|
| 9524810853 |
\frac{1/d_2}{1/d_2}
|
|
|
TODO |
|
|
| 9562264720 |
[S] = \frac{k_{\rm desorption} [A_{\rm adsorption}]}{k_{\rm adsorption} p_A}
|
|
|
TODO |
|
|
| 9565166889 |
T
|
|
|
TODO |
|
|
| 9582958293 |
x = \sqrt{(b/(2 a))^2 - (c/a)}-(b/(2 a))
|
|
|
TODO |
|
|
| 9582958294 |
x+(b/(2 a)) = \sqrt{(b/(2 a))^2 - (c/a)}
|
|
|
TODO |
|
|
| 9585727710 |
\psi(x=0) = 0
|
|
|
TODO |
|
|
| 9590696981 |
9.80665
|
|
|
TODO |
|
|
| 9594072504 |
m_2
|
|
|
TODO |
|
|
| 9596004948 |
x = \langle\psi_{\alpha}| \hat{A} |\psi_{\beta}\rangle
|
|
|
TODO |
|
|
| 9601500174 |
v_{\rm Earth\ orbit}
|
|
|
TODO |
|
|
| 9623791270 |
d
|
|
|
TODO |
|
|
| 9640720571 |
v = \frac{e^2}{4 \pi \epsilon_0 \hbar} \sqrt{\frac{m_e}{2 m}}
|
|
|
TODO |
|
|
| 9645178657 |
a t
|
|
|
TODO |
|
|
| 9658195023 |
d = v_0 t + \frac{1}{2} a t^2
|
|
|
TODO |
|
|
| 9674924517 |
K >> G
|
|
|
TODO |
yfN-LaW1BQAJ
|
|
| 9703482302 |
G \frac{m_{\rm Earth} m}{r_{\rm Earth}} = \frac{1}{2} m v_{\rm escape}^2
|
|
|
TODO |
|
|
| 9707028061 |
a_x = 0
|
|
|
TODO |
|
|
| 9718685793 |
\kappa_T = \frac{1}{P}
|
|
|
TODO |
|
|
| 9746066299 |
R_2
|
|
|
TODO |
|
|
| 9749777192 |
0 = KE_1 + PE_1
|
|
|
TODO |
|
|
| 9753878784 |
v
|
|
|
TODO |
|
|
| 9756089533 |
\sin( \theta_{\rm Brewster} ) = \frac{n_2}{n_1} \cos( \theta_{\rm Brewster} )
|
|
|
TODO |
|
|
| 9759901995 |
v - v_0 = a t
|
|
|
TODO |
|
|
| 9761485403 |
Z
|
|
|
TODO |
|
|
| 9781951738 |
\kappa_T = \frac{-1}{V} \left( \frac{ \partial V}{\partial P} \right)_T
|
|
|
TODO |
definition of isothermal compressibility
|
|
| 9789485295 |
v_{\rm satellite}
|
|
|
TODO |
|
|
| 9794128647 |
m_1
|
|
|
TODO |
|
|
| 9805063945 |
\gamma^2 (x - v t)^2 + y^2 + z^2 = c^2 \gamma^2 \left( t + \frac{ 1 - \gamma^2 }{ \gamma^2 } \frac{x}{v} \right)^2
|
|
|
TODO |
|
|
| 9830343096 |
V_1
|
|
|
TODO |
|
|
| 9838128064 |
d_2 \frac{4 \pi^2}{T^2} = G \frac{m_1}{r^2}
|
|
|
TODO |
|
|
| 9847143017 |
\kappa_T = \frac{-PV}{V} \left( \frac{-1}{P^2}\right)
|
|
|
TODO |
|
|
| 9848292229 |
dy = y i dx
|
|
|
TODO |
|
|
| 9848294829 |
\frac{d}{dx} y = y i
|
|
|
TODO |
|
|
| 9854442418 |
v = \sqrt{\frac{E}{m}}
|
|
|
TODO |
|
|
| 9858028950 |
\frac{1}{a^2} = \int_0^W \frac{1-\cos\left(2\frac{n \pi}{W}x\right)}{2} dx
|
|
|
TODO |
|
|
| 9862900242 |
y = - \frac{1}{2} g t^2 + v_0 t \sin(\theta) + y_0
|
|
|
TODO |
|
|
| 9881106100 |
a
|
|
|
TODO |
|
|
| 9882526611 |
v_{0, x} t = x - x_0
|
|
|
TODO |
|
|
| 9884115626 |
r
|
|
|
TODO |
|
|
| 9885190237 |
i
|
|
|
TODO |
|
|
| 9889984281 |
2 (\sin(x))^2 = 1 - \cos(2 x)
|
|
|
TODO |
|
|
| 9894826550 |
2 \sin(x) \cos(x) = \frac{1}{2i}\left(\exp(i x)-\exp(-i x) \right) \left(\exp(i x)+\exp(-i x) \right)
|
|
|
TODO |
|
|
| 9897284307 |
\frac{d}{t} = \frac{v + v_0}{2}
|
|
|
TODO |
|
|
| 9903988330 |
m
|
|
|
TODO |
|
|
| 9906920183 |
x
|
|
|
TODO |
|
|
| 9919999981 |
\rho = 0
|
|
|
TODO |
|
|
| 9933742680 |
r_{\rm Schwarzschild}
|
|
|
TODO |
|
|
| 9941599459 |
dU = \left(\frac{\partial U}{\partial T}\right)_V dT + \left(\frac{\partial U}{\partial V}\right)_T dV
|
|
|
TODO |
based on U(p, T, V) = U(T, V)
|
|
| 9956609318 |
6.67430*10^{-11}
|
|
|
TODO |
|
|
| 9958485859 |
\frac{-\hbar^2}{2m} \nabla^2 \psi \left( \vec{r},t \right) = i \hbar \frac{\partial}{\partial t} \psi( \vec{r},t)
|
|
|
TODO |
|
|
| 9973952056 |
-g t = v_y - v_{0, y}
|
|
|
TODO |
|
|
| 9988949211 |
(\sin(x))^2 = \frac{1 - \cos(2 x)}{2}
|
|
|
TODO |
|
|
| 9991999979 |
\vec{ \nabla} \times \vec{E} = -\mu_0\frac{\partial \vec{H}}{\partial t}
|
|
|
TODO |
|
|
| 9999998870 |
\frac{ \vec{p}}{\hbar} = \vec{k}
|
|
|
TODO |
|
|
| 9999999870 |
\frac{p}{\hbar} = k
|
|
|
TODO |
|
|
| 9999999960 |
\hbar = h/(2 \pi)
|
|
|
TODO |
|
|
| 9999999961 |
\frac{E}{\hbar} = \omega
|
|
|
TODO |
|
|
| 9999999962 |
p = \hbar k
|
|
|
TODO |
|
|
| 9999999965 |
E = \omega \hbar
|
|
|
TODO |
|
|
| 9999999968 |
x = \frac{-b-\sqrt{b^2-4ac}}{2 a}
|
|
|
TODO |
|
|
| 9999999969 |
x = \frac{-b+\sqrt{b^2-4ac}}{2 a}
|
|
|
TODO |
|
|
| 9999999975 |
\langle \psi| \hat{A} |\psi \rangle = \langle a \rangle
|
|
|
TODO |
|
|
| 9999999981 |
\vec{ \nabla} \cdot \vec{E} = \rho/\epsilon_0
|
|
|
TODO |
|
|
Physics Derivation Graph: 988 Expressions