Physics Derivation Graph navigation Sign in

Expressions in the Physics Derivation Graph

Case-insensitive dynamic search of latex as plain text:
Case-sensitive static search of latex using regex:

expression ID Latex list of symbols name dimension check notes used in derivation
0000040490 a^2 TODO
0000999900 b/(2 a) TODO
0001030901 \cos(x) TODO
0001111111 (\sin(x))^2 TODO
0001209482 2 \pi TODO
0001304952 \hbar TODO
0001334112 W TODO
0001921933 2 i TODO
0002239424 2
TODO
0002338514 \vec{p}_{2} TODO
0002342425 m/m TODO
0002393922 x TODO
0002424922 a TODO
0002436656 i \hbar TODO
0002449291 b/(2 a) TODO
0002838490 b/(2 a) TODO
0002919191 \sin(-x) TODO
0002929944 1/2
TODO
0002940021 2 \pi TODO
0003232242 t TODO
0003413423 \cos(-x) TODO
0003747849 -1
TODO
0003838111 2
TODO
0003919391 x TODO
0003949052 -x TODO
0003949921 \hbar TODO
0003954314 dx TODO
0003981813 -\sin(x) TODO
0004089571 2 x TODO
0004264724 y TODO
0004307451 (b/(2 a))^2 TODO
0004582412 x TODO
0004829194 2
TODO
0004831494 a TODO
0004849392 x TODO
0004858592 h TODO
0004934845 x TODO
0004948585 a TODO
0005395034 a_{\alpha} \langle \psi_{\alpha} | \psi_{\beta} \rangle TODO
0005626421 t TODO
0005749291 f TODO
0005938585 \frac{-\hbar^2}{2m} TODO
0006466214 (\sin(x))^2 TODO
0006544644 t TODO
0006563727 x TODO
0006644853 c/a TODO
0006656532 e TODO
0007471778 2(\sin(x))^2 TODO
0007563791 i TODO
0007636749 x TODO
0007894942 (\sin(x))^2 TODO
0008837284 T TODO
0008842811 \cos(2 x) TODO
0009458842 \psi(x) TODO
0009484724 \frac{n \pi}{W}x TODO
0009485857 a^2\frac{2}{W} TODO
0009485858 \frac{2n\pi}{W} TODO
0009492929 v du TODO
0009587738 \psi TODO
0009877781 y TODO
0203024440 1 = \int_0^W a \sin\left(\frac{n \pi}{W} x\right) \psi(x)^* dx TODO
0404050504 \lambda = \frac{v}{f} TODO
0439492440 \frac{1}{a^2} = \frac{1}{2}W - \frac{1}{2}\left. \frac{W}{2n\pi}\sin\left(\frac{2n\pi}{W} x\right) \right|_0^W TODO evaluating-definite-integrals-for.html
0934990943 k = \frac{2 \pi}{v T} TODO
0948572140 \int \cos(a x) dx = \frac{1}{a}\sin(a x) TODO
1010393913 \langle \psi| \hat{A}^+ |\psi \rangle = \langle a \rangle^* TODO stats.html
1010393944 x = \langle\psi_{\alpha}| a_{\beta} |\psi_{\beta} \rangle TODO
1010923823 k W = n \pi TODO
1020010291 0 = a \sin(k W) TODO
1020394900 p = h/\lambda TODO
1020394902 E = h f TODO
1020854560 I = (A + B)(A + B)^* TODO
1025759423 y TODO
1029039903 p = m v TODO
1029039904 p^2 = m^2 v^2 TODO
1036530438 d_2 TODO
1038566242 \sinh x = \frac{\exp(x) - \exp(-x)}{2} TODO
1085150613 C_V = \left(\frac{\partial U}{\partial T}\right)_V TODO definition of heat capacity at constant volume
1087417579 0 = - \frac{1}{2} g t_f^2 + v_0 t_f \sin(\theta) TODO
1092872200 KE_1 TODO
1100332145 R TODO
1114820451 W_{\rm by\ system} = \Delta KE Work is change in energy TODO
1128605625 {\rm sech}^2\ x + \tanh^2(x) = \frac{4}{\left(\exp(x)+\exp(-x)\right)^2} + \frac{\left(\exp(x)-\exp(-x)\right)^2}{\left(\exp(x)+\exp(-x)\right)^2} TODO
1132941271 m_{\rm Earth} = \frac{(9.80665 m/s^2) (6.3781*10^6 m)^2}{6.67430*10^{-11}m^3 kg^{-1} s^{-2}} TODO
1143343287 G \frac{m_{\rm Earth}}{r_{\rm Earth}} = \frac{1}{2} v_{\rm escape}^2 TODO
1158485859 \frac{-\hbar^2}{2m} \nabla^2 = {\cal H} TODO
1166310428 0 dt = d v_x TODO
1172039918 I_{\rm coherent} = 4 |A|^2 TODO
1190768176 \kappa_T = \frac{-nRT}{V} \left( \frac{ \partial }{\partial P}\left(\frac{1}{P}\right) \right)_T TODO
1191796961 \frac{1}{2} g t_f = v_0 \sin(\theta) TODO
1193980495 m_{\rm Earth} TODO
1201689765 x'^2 + y'^2 + z'^2 = c^2 t'^2 TODO describes a spherical wavefront for an observer in a moving frame of reference
1202310110 \frac{1}{a^2} = \int_0^W \frac{1}{2} dx - \frac{1}{2} \int_0^W \cos\left(2\frac{n \pi}{W}x\right) dx TODO
1202312210 \frac{1}{a^2} = \frac{1}{2}W - \frac{1}{2} \int_0^W \cos\left(2\frac{n \pi}{W}x\right) dx TODO
1203938249 a_{\beta} \langle \psi_{\alpha} | \psi_{\beta} \rangle = a_{\alpha} \langle \psi_{\alpha} | \psi_{\beta} \rangle TODO
1238593037 c TODO
1248277773 \cos(2 x) = 1 - 2 (\sin(x))^2 TODO
1258245373 E TODO
1259826355 d = (v - a t) t + \frac{1}{2} a t^2 TODO
1265150401 d = \frac{2 v_0 + a t}{2} t TODO
1268845856 [A_{\rm adsorption}] TODO
1277713901 d TODO
1292735067 F_{gravitational} = G \frac{m_1 m_2}{r^2} TODO
1293913110 0 = b TODO
1293923844 \lambda = v T TODO
1306360899 x = v_{0, x} t + x_0 TODO
1310571337 \theta_{\rm refracted} = 90^{\circ} - \theta_{\rm Brewster} TODO
1311403394 \alpha = \frac{1}{V} \frac{nR}{P} \left( \frac{\partial T}{\partial T} \right)_P TODO
1314464131 \vec{ \nabla} \times \frac{\partial \vec{H}}{\partial t} = \epsilon_0 \frac{\partial^2 \vec{E}}{\partial t^2} TODO
1314864131 \vec{ \nabla} \times \vec{H} = \epsilon_0 \frac{\partial }{\partial t}\vec{E} TODO
1323602089 I_1 TODO
1330874553 v_{\rm escape} = \sqrt{2 G \frac{m_{\rm Earth}}{r_{\rm Earth}}} TODO
1333474099 F_{\rm centripetal} TODO
1357848476 A = |A| \exp(i \theta) TODO
1377431959 R TODO
1395858355 x = \langle \psi_{\alpha}| a_{\alpha} |\psi_{\beta}\rangle TODO
1405465835 y = - \frac{1}{2} g t^2 + v_{0, y} t + y_0 TODO
1413137236 m_1 TODO
1439089569 v_{0, x} TODO
1451839362 t TODO
1457415749 \frac{1}{R_{\rm total}} = \frac{1}{R_1} + \frac{1}{R_2} total resistance for two resistors in parallel TODO
1484794622 R_2 TODO
1511199318 Z TODO
1512581563 x TODO
1525861537 I = |A|^2 + |B|^2 + A B^* + B A^* TODO
1528310784 \gamma = \frac{1}{\sqrt{1-\frac{v^2}{c^2}}} TODO
1541916015 \theta = \frac{\pi}{4} TODO
1552869972 x_1 TODO
1556389363 E_{\rm Rydberg} = \frac{ m_e e^4 }{ 32 \pi^2 \epsilon_0^2 \hbar^2} TODO the bonding energy in condensed phases is given by the Rydberg energy on the order of several e
1559688463 \left(\frac{T_{\rm geostationary\ orbit}^2 G m_{\rm Earth}}{4 \pi^2}\right)^{1/3} = r_{\rm geostationary\ orbit} TODO
1571582377 F_{gravitational} \propto \frac{1}{r^2} TODO
1586866563 \left( \gamma^2 - c^2 \gamma^2 \left( \frac{1-\gamma^2}{\gamma^2} \right)^2 \frac{1}{v^2} \right) x^2 + y^2 + z^2 + \left( -\gamma^2 2 x v t - c^2 \gamma^2 2 t \left( \frac{1-\gamma^2}{\gamma^2} \right) \frac{x}{v} \right) = t^2 \left( c^2 \gamma^2 - \gamma^2 v^2 \right) TODO
1590774089 dW = F dx TODO
1608399874 V_2 TODO
1614343171 dt TODO
1616666229 v_{\rm final} TODO
1635147226 m_2 TODO
1636453295 \vec{ \nabla} \times \vec{ \nabla} \times \vec{E} = - \nabla^2 \vec{E} TODO
1638282134 \vec{p}_{\rm before} = \vec{p}_{\rm after} TODO
1639827492 - c^2 \frac{(1-\gamma^2)}{v^2 \gamma^2} = 1 TODO
1648958381 \nabla^2 \psi \left( \vec{r},t \right) = \frac{i}{\hbar} \vec{p} \cdot \left( \vec{ \nabla} \psi( \vec{r},t) \right) TODO representing-laplace-operator-nabla-in.html
1650441634 y_0 = 0 TODO define coordinate system such that initial height is at origin
1676472948 0 = v_x - v_{0, x} TODO
1702349646 -g dt = d v_y TODO
1716984328 i x TODO
1742775076 Z TODO
1772416655 \frac{E_2 - E_1}{t} = v F - F v TODO
1772973171 -\frac{k}{m} x = -A \omega^2 \cos(\omega t) TODO
1784114349 \sqrt{\frac{k}{m}} = \omega TODO
1809909100 \frac{E_2 - E_1}{t} = 0 TODO
1811867899 T^2 = \frac{d_1+d_2}{d_1+d_2} d_2 4 \pi^2 \frac{r^2}{G m_1} TODO
1815398659 U = Q + W TODO
1819663717 a_x = \frac{d}{dt} v_x TODO
1823570358 C TODO
1840080113 KE_2 = 0 TODO object is not moving at $x=\infty$
1848400430 F \propto m TODO
1857710291 0 = a \sin(n \pi) TODO
1858578388 \nabla^2 E( \vec{r})\exp(i \omega t) = - \omega^2 \mu_0 \epsilon_0 E( \vec{r})\exp(i \omega t) TODO representing-laplace-operator-nabla-in.html
1858772113 k = \frac{n \pi}{W} TODO
1888494137 -\sqrt{\frac{k}{m}} = \omega TODO
1894894315 Z TODO
1916173354 -\gamma^2 v^2 + c^2 \gamma^2 = c^2 TODO
1928085940 Z^* = |Z| \exp( -i \theta ) TODO
1931103031 \frac{k}{m} = \omega^2 TODO
1934748140 \int |\psi(x)|^2 dx = 1 TODO
1935543849 \gamma^2 x^2 - \gamma^2 2 x v t + \gamma^2 v^2 t^2 + y^2 + z^2 = c^2 \gamma^2 \left(\frac{1-\gamma^2}{\gamma^2}\right)\frac{x^2}{\gamma^2} + c^2 \gamma^2 2 t \left(\frac{1-\gamma^2}{\gamma^2}\right)\frac{x}{\gamma} + c^2 \gamma^2 t^2 TODO
1945487024 p_A [S] TODO
1963253044 v_{0, x} dt = dx TODO
1967582749 t = \frac{v - v_0}{a} TODO
1974334644 \frac{x (1 - \gamma^2 )}{\gamma v} + \frac{\gamma^2 v t}{\gamma v} = t' TODO
1977955751 -g = \frac{d}{dt} v_y TODO
1994296484 v_{\rm satellite}^2 = G \frac{m_{\rm Earth}}{r} TODO
2005061870 v(r) = \sqrt{\frac{2 G m_2}{r}} TODO
2016063530 t TODO
2029293929 \nabla^2 E( \vec{r})\exp(i \omega t) = \mu_0 \epsilon_0 \frac{\partial^2}{\partial t^2} E( \vec{r})\exp(i \omega t) TODO representing-laplace-operator-nabla-in.html
2042298788 0 = -G \frac{m_{\rm Earth} m}{r_{\rm Earth}} + \frac{1}{2} m v_{\rm escape}^2 TODO
2051901211 \frac{V}{R_1} = I_1 TODO
2061086175 W_{\rm to\ system} = -G m_1 m_2 \left(\frac{-1}{r} - \frac{-1}{\infty}\right) TODO
2064205392 A TODO
2076171250 -\gamma^2 2 x v t - c^2 \gamma^2 2 t \left( \frac{1-\gamma^2}{\gamma^2} \right) \frac{x}{v} = 0 TODO
2081689540 t TODO
2086924031 0 = - \frac{1}{2} g t_f + v_0 \sin(\theta) TODO
2091584724 g_{\rm Earth} TODO
2096918413 x = \gamma ( \gamma x - \gamma v t + v t' ) TODO
2103023049 \sin(x) = \frac{1}{2i}\left(\exp(i x)-\exp(-i x) \right) TODO
2113211456 f = 1/T TODO
2114570475 m_{\rm satellite} TODO
2114909846 \theta_A = \frac{[A_{\rm adsorption}]}{[S_0]} TODO
2121790783 \tanh^2(x) = \frac{ \left(\exp(x)-\exp(-x)\right)^2}{\left(\exp(x)+\exp(-x)\right)^2} TODO
2123139121 -\exp(-i x) = -\cos(x)+i \sin(x) TODO
2131616531 T f = 1 TODO
2135482543 m TODO
2148049269 -\frac{k}{m} A \cos(\omega t) = -A \omega^2 \cos(\omega t) TODO
2168306601 [S_0] = \left(\frac{k_{\rm desorption}}{k_{\rm adsorption}} \frac{1}{p_A} + 1\right)[A_{\rm adsorption}] TODO
2186083170 \frac{KE_2 - KE_1}{t} = v F TODO
2217103163 \frac{m_1 d_1}{d_2} = m_2 TODO
2226340358 \gamma v TODO
2232825726 g_{\rm Earth} TODO
2236639474 (A + B)(A + B)^* = |A + B|^2 TODO
2242144313 a TODO
2257410739 \left(\frac{\partial U}{\partial T}\right)_p = C_V \left(\frac{\partial T}{\partial T}\right)_p + \pi_T V \alpha TODO
2258485859 {\cal H} \psi \left( \vec{r},t \right) = i \hbar \frac{\partial}{\partial t} \psi( \vec{r},t) TODO
2267521164 PE_2 = 0 TODO object goes to $\infty$ away from gravitational source
2271186630 V = I_{\rm total} R_{\rm total} TODO
2293352649 \theta - \phi TODO
2297105551 d = v_0 \frac{2 v_0 \sin(\theta)}{g} \cos(\theta) TODO
2308660627 G \frac{m_{\rm Earth}}{r_{\rm Earth}^2} = g_{\rm Earth} TODO
2334518266 m a = -k x TODO
2344320475 E_2 TODO
2346150725 r TODO
2346952973 m TODO
2366691988 \int 0 dt = \int d v_x TODO
2378095808 x_f = x_0 + d TODO
2394240499 x = a_{\beta} \langle \psi_{\alpha} | \psi_{\beta} \rangle TODO
2394853829 \exp(-i x) = \cos(-x)+i \sin(-x) TODO
2394935831 ( a_{\beta} - a_{\alpha} ) \langle \psi_{\alpha} | \psi_{\beta} \rangle = 0 TODO
2394935835 \left(\langle\psi| \hat{A} |\psi \rangle \right)^+ = \left(\langle a \rangle\right)^+ TODO
2395958385 \nabla^2 \psi \left( \vec{r},t \right) = \frac{-p^2}{\hbar} \psi( \vec{r},t) TODO representing-laplace-operator-nabla-in.html
2396787389 r_{\rm Earth} TODO
2397692197 a^3 TODO
2403773761 t TODO
2404934990 \langle x^2\rangle -2\langle x \rangle\langle x \rangle+\langle x \rangle^2 = \langle x^2 \rangle-\langle x \rangle^2 TODO
2405307372 \sin(2 x) = 2 \sin(x) \cos(x) TODO
2417941373 - c^2 \gamma^2 \frac{(1-\gamma^2)^2}{v^2 \gamma^4} = 1 - \gamma^2 TODO
2431507955 PE_2 = -F x_2 TODO
2461349007 - \frac{1}{2} g t^2 + v_{0, y} t + y_0 = y TODO
2472653783 \alpha = \frac{1}{T} TODO
2484824786 F = m g TODO
2494533900 \langle x^2\rangle -\langle x \rangle^2 = \langle x^2 \rangle-\langle x \rangle^2 TODO
2501591100 \exp(i \pi) + 1 = 0 TODO
2503972039 0 = KE_{\rm escape} + PE_{\rm Earth\ surface} TODO
2510804451 2/g TODO
2519058903 \sin(2 \theta) = 2 \sin(\theta) \cos(\theta) TODO
2542420160 c^2 \gamma^2 - v^2 \gamma^2 = c^2 TODO
2575937347 n_1 \sin( \theta_{\rm Brewster} ) = n_2 \sin( \theta_{\rm refracted} ) TODO
2613006036 \frac{PV}{T} = nR TODO
2617541067 \left(\frac{T_{\rm orbit}^2 G m_{\rm Earth}}{4 \pi^2}\right)^{1/3} = r TODO
2648958382 \nabla^2 \psi \left( \vec{r},t \right) = \frac{i}{\hbar} \vec{p} \cdot \left( \frac{i}{\hbar} \vec{p} \psi( \vec{r},t) \right) TODO
2660368546 r TODO
2674546234 m_{\rm Earth} TODO
2685587762 \frac{r_{\rm Earth}^2}{G} TODO
2698469612 V TODO
2700934933 2 \cos(x) = \left( \exp(i (\theta - \phi)) + \exp(-i (\theta - \phi)) \right) TODO
2715678478 I R_{\rm total} = I R_1 + I R_2 TODO
2719691582 |A| = |B| TODO in a loop
2741489181 a_y = -g TODO
2750380042 v_{\rm escape} = -\sqrt{2 G \frac{m_{\rm Earth}}{r_{\rm Earth}}} TODO
2754264786 2
TODO
2762326680 \cosh^2 x - \sinh^2 x = \frac{1}{4}\left( \exp(2x)+1+1+\exp(-2x) - \left(\exp(2x)-1-1+\exp(-2x)\right) \right) TODO
2764966428 m_2 TODO
2768857871 \frac{\sin( \theta_{\rm Brewster} )}{\cos( \theta_{\rm Brewster} )} = \frac{n_2}{n_1} TODO
2770069250 \frac{E_2 - E_1}{t} = \frac{(KE_2 - KE_1)}{t} + \frac{(PE_2 - PE_1)}{t} TODO
2773628333 \theta_1 TODO
2809345867 \frac{V}{R_{\rm total}} = I_{\rm total} TODO
2848934890 \langle a \rangle^* = \langle a \rangle TODO
2857430695 a = \frac{v_2 - v_1}{t} acceleration TODO
2858549874 - \frac{1}{2} g t^2 + v_{0, y} t = y - y_0 TODO
2867848403 I TODO
2883079365 r_{\rm Schwarzschild} c^2 = 2 G m TODO
2897612567 v = \alpha c \sqrt{ \frac{m_e}{A m_p} } TODO
2902772962 \tanh(x) = \frac{\frac{1}{2}\left( \exp(x)-\exp(-x) \right)}{\cosh(x)} TODO
2906548078 T^2 = \frac{r}{d_1+d_2} d_2 4 \pi^2 \frac{r^2}{G m_1} TODO
2907404069 W_{\rm by\ system} = W_{\rm to\ system} TODO
2924222857 v_{\rm initial} = v(r=\infty) TODO
2944838499 \psi(x) = a \sin(\frac{n \pi}{W} x) TODO
2957211007 m^3 kg^{-1} s^{-2}
TODO
2977457786 2 G \frac{m_{\rm Earth}}{r_{\rm Earth}} = v_{\rm escape}^2 TODO
2983053062 x = \gamma (x' + v t') TODO
2998709778 v_{\rm initial} = 0 TODO
2999795755 c^2 \gamma^2 = v^2 \gamma^2 + c^2 TODO
3004158505 \frac{T^2}{r} F_{gravitational} = \left( \frac{4 \pi^2 m r}{T^2} \right)\frac{T^2}{r} TODO
3031116098 R_2 TODO
3041762466 i TODO  
3046191961 v_{\rm Earth\ orbit} = \frac{C_{\rm Earth\ orbit}}{t_{\rm Earth\ orbit}} TODO
3060393541 I_{\rm incoherent} = 2|A|^2 TODO
3061811650 n_1 \sin( \theta_{\rm Brewster} ) = n_2 \cos( \theta_{\rm Brewster} ) TODO
3080027960 v_{\rm Earth\ orbit} = \frac{2 \pi r_{\rm Earth\ orbit}}{t_{\rm Earth\ orbit}} TODO
3085575328 I = |A|^2 + |B|^2 + |A| |B| \exp(i (\theta - \phi)) + |A| |B| \exp(-i (\theta - \phi)) TODO
3088463019 m_2 TODO
3105350101 v_1 TODO
3121234211 \frac{k}{2\pi} = \lambda TODO
3121234212 p = \frac{h k}{2\pi} TODO
3121513111 k = \frac{2 \pi}{\lambda} TODO
3131111133 T = 1 / f TODO
3131211131 \omega = 2 \pi f TODO
3132131132 \omega = \frac{2\pi}{T} TODO
3147472131 \frac{\omega}{2 \pi} = f TODO
3166466250 m_1 TODO
3169580383 \vec{a} = \frac{d\vec{v}}{dt} TODO acceleration is the change in speed over a duration
3176662571 F_{\rm centripetal} = F_{\rm gravity} TODO applicable to any satellite orbit
3182633789 \gamma^2 - c^2 \gamma^2 \frac{(1-\gamma^2)^2}{v^2 \gamma^4} = 1 TODO
3182907803 x_0 TODO
3183197515 v_1 TODO
3214170322 v(r=\infty) = 0 TODO
3219318145 \frac{365 {\rm days}}{1 {\rm year}} \frac{24 {\rm hours}}{1 {\rm day}} \frac{60 {\rm minutes}}{1 {\rm hour}} \frac{60 {\rm seconds}}{1 {\rm minute}}
TODO
3236313290 d TODO
3246378279 m TODO
3253234559 x = \frac{v_2^2 - v_1^2}{2 a} TODO
3268645065 x TODO
3270039798 2
TODO
3273630811 x TODO
3274176452 v_{\rm initial} TODO
3274926090 t = \frac{x - x_0}{v_{0, x}} TODO
3285732911 (\cos(x))^2 = 1-(\sin(x))^2 TODO
3291685884 E = \frac{ m_e e^4 }{ 32 \pi^2 \epsilon_0^2 \hbar^2} TODO
3331824625 \exp(i \pi) = -1 TODO
3342155559 m TODO
3350802342 KE_{\rm initial} TODO
3350830826 Z Z^* = |Z|^2 TODO
3353418803 x TODO
3360172339 W = KE_2 - KE_1 TODO
3364286646 m_{\rm Earth} = 5.972*10^{24} kg TODO
3366703541 a = \frac{v - v_0}{t} TODO acceleration is the average change in speed over a duration
3398368564 F TODO
3411994811 v_{\rm average} = \frac{d}{t} TODO
3412946408 v^2 \gamma^2 TODO
3417126140 \tan( \theta_{\rm Brewster} ) = \frac{ n_2 }{ n_1 } TODO
3426941928 x = \gamma ( \gamma (x - v t) + v t' ) TODO
3433441359 V TODO
3448601530 \frac{T^2}{r} TODO
3462972452 v = v_0 + a t TODO
3464107376 \alpha = \frac{1}{V} \left( \frac{\partial V}{\partial T} \right)_p TODO definition of expansion coefficient
3470587782 \sin(x) \cos(x) = \frac{1}{2i}\left(\exp(i x)-\exp(-i x) \right) \frac{1}{2}\left(\exp(i x)+\exp(-i x) \right) TODO
3472836147 r_{\rm Earth\ orbit} = 1.496\ 10^8 {\rm km} TODO
3485125659 x_f = v_0 t_f \cos(\theta) + x_0 TODO
3485475729 \nabla^2 E( \vec{r}) = - \frac{\omega^2}{c^2} E( \vec{r}) TODO representing-laplace-operator-nabla-in.html
3486213448 m_{\rm satellite} TODO
3488423948 k_{\rm adsorption} p_A [S] = k_{\rm desorption} [A_{\rm adsorption}] TODO
3495403335 x TODO
3497828859 V = \frac{n R T}{P} TODO
3507029294 k_{\rm adsorption} p_A [S] = r_{\rm desorption} TODO
3512166162 W = F x TODO
3531380618 v(r) TODO
3547519267 S = k_{\rm Boltzmann} \ln \Omega TODO assumes equally probable microstates
3566149658 W_{\rm to\ system} = \int_{\infty}^r \frac{-G m_1 m_2}{x^2} dx TODO
3585845894 \langle \left(x-\langle x \rangle\right)^2 \rangle = \langle x^2 \rangle-\langle x \rangle^2 TODO
3591237106 \frac{E_2 - E_1}{t} = \frac{(KE_2 - KE_1)}{t} - F v TODO
3594626260 F_{\rm gravity} TODO
3599953931 [S_0] = [S] + [A_{\rm adsorption}] TODO
3605073197 \kappa_T = \frac{-nRT}{V} \left( \frac{-1}{P^2}\right) TODO
3607070319 d = \frac{v_0^2}{g} \sin\left(2 \frac{\pi}{4}\right) TODO
3614055652 v = \frac{2 \pi r}{T_{\rm orbit}} TODO
3634715785 m TODO
3649797559 F_{\rm centripetal} = m_2 d_2 \omega^2 TODO
3650370389 \frac{T^2}{r} F_{gravitational} = 4 \pi^2 m TODO
3650814381 F_{gravitational} \propto \frac{m_1 m_2}{r^2} TODO
3652511721 v TODO
3660957533 \cos(x) = \frac{1}{2} \left( \exp(i (\theta - \phi)) + \exp(-i (\theta - \phi)) \right) TODO
3663007361 2
TODO
3676159007 v_{0, x} \int dt = \int dx TODO
3685779219 \sqrt{f} \approx 2 TODO
3722461713 t TODO
3723096423 6.3781*10^6
TODO
3731774096 KE TODO
3736177473 r_{\rm adsorption} = k_{\rm adsorption} p_A [S] TODO
3749492596 E TODO
3781109867 T^2 = \frac{r^3 4 \pi^2}{(d_1+d_2) \frac{m_1}{d_2}G} TODO
3806977900 E_2 - E_1 = 0 TODO
3809726424 PE TODO
3829492824 \frac{1}{2}\left(\exp(i x)+\exp(-i x) \right) = \cos(x) TODO
3846041519 PE_{\rm Earth\ surface} = -G \frac{m_{\rm Earth} m}{r_{\rm Earth}} TODO
3846345263 T_{\rm orbit} TODO
3868998312 {\rm sech}^2\ x = \frac{4}{\left(\exp(x)+\exp(-x)\right)^2} TODO
3876446703 m TODO
3896798826 m_2 d_2 \omega^2 = G \frac{m_1 m_2}{r^2} TODO
3906710072 G \frac{m_{\rm Earth}}{r} = \frac{4 \pi^2 r^2}{T_{\rm orbit}^2} TODO
3911081515 -1
TODO
3920616792 T_{\rm geostationary orbit} = 24\ {\rm hours} TODO this applies for geostationary orbits
3921072591 m_1 TODO
3924948349 a_{\beta} \langle \psi_{\alpha} | \psi_{\beta} \rangle - a_{\alpha} \langle \psi_{\alpha} | \psi_{\beta} \rangle = 0 TODO
3935058307 v = \sqrt{ \frac{m_e}{m} \frac{e^4}{32 \pi^2 \epsilon_0^2 \hbar^2} } TODO
3939572542 KE_{\rm final} TODO
3942849294 \exp(i x)-\exp(-i x) = 2 i \sin(x) TODO
3943939590 x = a_{\alpha} \langle \psi_{\alpha}| \psi_{\beta}\rangle TODO
3947269979 \vec{ \nabla} \times \vec{ \nabla} \times \vec{E} = -\mu_0 \epsilon_0 \frac{\partial^2 \vec{E}}{\partial t^2} TODO
3948571256 \frac{\partial}{\partial t} \psi( \vec{r},t) = \frac{-i}{\hbar}E \psi( \vec{r},t) TODO
3948574224 \psi( \vec{r},t) = \psi_0 \exp\left(i\left( \vec{k}\cdot\vec{r} - \omega t \right) \right) TODO
3948574226 \psi( \vec{r},t) = \psi_0 \exp\left(i\left(\frac{ \vec{p}\cdot\vec{r}}{\hbar} - \omega t \right) \right) TODO
3948574228 \psi( \vec{r},t) = \psi_0 \exp\left(i\left(\frac{ \vec{p}\cdot\vec{r}}{\hbar} - \frac{E t}{\hbar} \right) \right) TODO
3948574230 \psi( \vec{r},t) = \psi_0 \exp\left(\frac{i}{\hbar}\left( \vec{p}\cdot\vec{r} - E t \right) \right) TODO
3948574233 \frac{\partial}{\partial t} \psi( \vec{r},t) = \psi_0 \frac{\partial}{\partial t}\exp\left(i\left(\frac{ \vec{p}\cdot\vec{r}}{\hbar} - \frac{E t}{\hbar} \right) \right) TODO
3951205425 \vec{p}_{\rm after} = \vec{p}_{1} TODO
3967985562 2
TODO
4057686137 C TODO
4072200527 \frac{m_{\rm satellite} v_{\rm satellite}^2}{r} = G \frac{m_{\rm Earth} m_{\rm satellite}}{r^2} TODO
4075539836 A A^* = |A|^2 TODO
4087145886 V = I R Ohm's law TODO Ohm%27s_law
4107032818 E_{\rm Rydberg} = E TODO
4128500715 V = I_1 R_1 TODO
4139999399 x - \gamma^2 x = - \gamma^2 v t + \gamma v t' TODO
4147101187 KE TODO
4147472132 E = \frac{h \omega}{2 \pi} TODO
4153613253 m_{\rm Earth} TODO
4158986868 a_x \hat{x} + a_y \hat{y} = \frac{d\vec{v}}{dt} TODO
4162188238 t_f TODO
4166155526 {\rm sech}\ x = \frac{2}{\exp(x)+\exp(-x)} TODO
4167526462 v_{0, y} TODO
4180845508 v_{\rm Earth\ orbit} = 29.8 \frac{{\rm km}}{{\rm sec}} TODO
4182362050 Z = |Z| \exp( i \theta ) TODO Z \in \mathbb{C}
4188580242 T^2 = \frac{r^3 4 \pi^2}{\left(m_1+\left(\frac{m_1}{d_2}d_1\right)\right)G} TODO
4188639044 x TODO
4192519596 B = |B| \exp(i \phi) TODO
4202292449 r_{\rm Earth\ orbit} TODO
4213426349 E_1 TODO
4218009993 x TODO
4245712581 v = \frac{2 \pi r}{t} TODO
4264859781 F \propto m_1 TODO
4267808354 F_{gravitational} = m \frac{v^2}{r} TODO
4268085801 x_0 + d = v_0 t_f \cos(\theta) + x_0 TODO
4270680309 \frac{KE_2 - KE_1}{t} = \frac{1}{2} m \frac{\left( v_2^2 - v_1^2 \right)}{t} TODO
4275004561 c^2 = 2 G \frac{m}{r_{\rm Schwarzschild}} TODO
4287102261 x^2 + y^2 + z^2 = c^2 t^2 TODO describes a spherical wavefront
4298359835 E = \frac{1}{2}m v^2 TODO
4298359845 E = \frac{1}{2m}m^2 v^2 TODO
4298359851 E = \frac{p^2}{2m} TODO
4301729661 [S_0] = \frac{[A_{\rm adsorption}]}{\left( \frac{k_{\rm adsorption}}{k_{\rm desorption}} \right) p_A} + [A_{\rm adsorption}] TODO
4303372136 E_1 = KE_1 + PE_1 TODO
4319470443 v_2 TODO
4319544433 1/3
TODO
4341171256 i \hbar \frac{\partial}{\partial t} \psi( \vec{r},t) = \frac{p^2}{2 m} \psi( \vec{r},t) TODO
4348571256 \frac{\partial}{\partial t} \psi( \vec{r},t) = \frac{-i}{\hbar}\frac{p^2}{2 m} \psi( \vec{r},t) TODO
4370074654 t = t_f TODO
4393258808 F_{\rm centripetal} = m r \omega^2 TODO
4393670960 W_{\rm to\ system} = \frac{G m_1 m_2}{r} TODO
4394958389 \vec{ \nabla}\cdot \left( \vec{ \nabla} \psi( \vec{r},t) \right) = \frac{i}{\hbar} \vec{ \nabla}\cdot\left( \vec{p} \psi( \vec{r},t) \right) TODO
4428528271 F_{\rm{spring}} = -k x Hooke's law TODO Hooke%27s_law
4437214608 Z TODO
4447113478 \int dW = G m_1 m_2 \int_{ r_{\rm Earth} }^{\infty} \frac{1}{x^2} dx TODO
4470433702 t_{\rm Earth\ orbit} TODO
4490788873 F \propto m_2 TODO
4501377629 \tan( \theta_{\rm Brewster} ) = \frac{ \sin( \theta_{\rm Brewster} )}{\cos( \theta_{\rm Brewster} )} TODO
4504256452 B^* = |B| \exp(-i \phi) TODO
4522137851 PE_2 TODO
4560648264 v = \sqrt{ \frac{K + (4/3) G}{\rho} } TODO
4580545876 d = v t - a t^2 + \frac{1}{2} a t^2 TODO
4583868070 B TODO
4585828572 \epsilon_0 \mu_0 = \frac{1}{c^2} TODO
4585932229 \cos(x) = \frac{1}{2}\left(\exp(i x)+\exp(-i x) \right) TODO
4587046017 KE TODO
4593428198 v_{\rm Earth\ orbit} = \frac{2 \pi r_{\rm Earth\ orbit}}{3.16\ 10^7 {\rm seconds}} TODO
4598294821 \exp(2 i x) = (\cos(x))^2+2i\cos(x)\sin(x)-(\sin(x))^2 TODO
4627284246 F_{\rm centripetal} = \frac{m_{\rm satellite} v_{\rm satellite}^2}{r} TODO
4638429483 \exp(2 i x) = (\cos(x)+ i \sin(x))(\cos(x)+ i \sin(x)) TODO
4648451961 v_2^2 - v_1^2 = (v_2 + v_1)(v_2 - v_1) TODO
4651061153 m_2 TODO
4662369843 x' = \gamma (x - v t) TODO
4669290568 PE_1 = -F x_1 TODO
4689334676 \theta_A = \frac{K_{\rm equilibrium}\ p_A}{1+K_{\rm equilibrium}\ p_A} TODO
4742644828 \exp(i x)+\exp(-i x) = 2 \cos(x) TODO
4748157455 a t = v - v_0 TODO
4755369593 x_2 TODO
4778077984 t_f = \frac{2 v_0 \sin(\theta)}{g} TODO
4784793837 \frac{KE_2 - KE_1}{t} = m v a TODO
4798787814 a t + v_0 = v TODO
4800170179 F = m g_{\rm Earth} TODO
4805233006 i \sin(i x) = \frac{1}{2}\left(\exp(x) - \exp(-x) \right) TODO  
4811121942 W = \frac{1}{2} m v_2^2 - \frac{1}{2} m v_1^2 TODO
4820320578 F_{gravitational} = F_{centripetal} TODO
4827492911 \cos(2 x)+(\sin(x))^2 = 1 - (\sin(x))^2 TODO
4829590294 t_f TODO
4830221561 {\rm sech}^2\ x + \tanh^2(x) = \frac{4+\left(\exp(2x)-1-1+\exp(-2x)\right)}{\left(\exp(x)+\exp(-x)\right)^2} TODO
4830480629 x TODO
4838429483 \exp(2 i x) = \cos(2 x)+i \sin(2 x) TODO
4843995999 \frac{1}{2 i}\left(\exp(i x)-\exp(-i x) \right) = \sin(x) TODO
4857472413 1 = \int \psi(x)\psi(x)^* dx TODO
4857475848 \frac{1}{a^2} = \frac{W}{2} TODO
4858693811 \frac{T_{\rm orbit}^2 G m_{\rm Earth}}{4 \pi^2} = r^3 TODO
4866160902 \frac{V}{R_{\rm total}} = \frac{V}{R_1} + \frac{V}{R_2} TODO
4872163189 \tanh(x) = \frac{\sinh(x)}{\cosh(x)} TODO
4872970974 \frac{PE_2 - PE_1}{t} = -F v TODO
4878728014 \sin(i x) = \frac{1}{2i}\left(\exp(-x) - \exp(x) \right) TODO
4901237716 1
TODO
4923339482 i x = \log(y) TODO
4928007622 KE_1 = \frac{1}{2} m v_1^2 TODO
4928239482 \log(y) = i x TODO
4935235303 x TODO
4938429482 \exp(-i x) = \cos(x)+i \sin(-x) TODO
4938429483 \exp(i x) = \cos(x)+i \sin(x) TODO
4938429484 \exp(-i x) = \cos(x)-i \sin(x) TODO
4939880586 V_{\rm total} = I R_{\rm total} TODO
4943571230 \vec{ \nabla} \psi( \vec{r},t) = \frac{i}{\hbar} \vec{p} \psi_0 \exp\left(\frac{i}{\hbar}\left( \vec{p}\cdot\vec{r} - E t \right) \right) TODO
4947831649 \frac{1}{2} m_1 v_{\rm final}^2 = W_{\rm to\ system} TODO
4948763856 2 a d + v_0^2 = v^2 TODO
4948934890 \langle \psi| \hat{A} |\psi \rangle = \langle a \rangle^* TODO
4949359835 \langle x^2\rangle -2\langle x^2 \rangle+\langle x \rangle^2 = \langle x^2 \rangle-\langle x \rangle^2 TODO
4961662865 x TODO
4968680693 \tan( x ) = \frac{ \sin( x )}{\cos( x )} TODO
4985825552 \nabla^2 E( \vec{r})\exp(i \omega t) = i \omega \mu_0 \epsilon_0 \frac{\partial}{\partial t} E( \vec{r})\exp(i \omega t) TODO representing-laplace-operator-nabla-in.html
5002539602 dU = C_V dT + \pi_T dV TODO
5011888122 v_2 TODO
5021965469 KE TODO
5050429607 G \frac{m_{\rm Earth} m}{r_{\rm Earth}} TODO
5074423401 V TODO
5075406409 PE TODO
5085809757 \frac{k_{\rm adsorption}}{k_{\rm desorption}} = \frac{[A_{\rm adsorption}]}{p_A [S]} TODO
5089196493 F TODO
5125940051 I = |A|^2 + B B^* + A B^* + B A^* TODO
5128670694 m_1 d_1 = m_2 d_2 TODO
5136652623 E = KE + PE mechanical energy is the sum of the potential plus kinetic energies TODO
5144263777 v^2 = v_0^2 + 2 a \left( v_0 t +\frac{1}{2} a t^2 \right) TODO
5148266645 t' = \frac{\gamma x (1 - \gamma^2 )}{\gamma^2 v} + \gamma t TODO
5177311762 v = \frac{2 \pi r}{T} TODO
5181421075 R_1 TODO
5194141542 x_f TODO
5208737840 T_{\rm geostationary\ orbit} TODO
5239755033 v_1 TODO
5258419993 R_1 TODO
5284610349 \gamma^2 TODO
5323719091 i \sinh x = \frac{1}{2i} \left( \exp(-x) - \exp(x) \right) TODO
5345738321 F = m a Newton's second law of motion TODO Newton%27s_laws_of_motion#Newton's_second_law
5349669879 \tanh(x) = \frac{ \exp(x)-\exp(-x)}{\exp(x)+\exp(-x)} TODO
5349866551 \vec{v} = v_x \hat{x} + v_y \hat{y} TODO
5353282496 d = \frac{v_0^2}{g} TODO
5359471792 \frac{m_{\rm satellite}}{r} TODO
5373931751 t = t_f TODO
5379546684 y_f = - \frac{1}{2} g t_f^2 + v_0 t_f \sin(\theta) + y_0 TODO
5398681502 v TODO
5398681503 v TODO
5404822208 v_{\rm escape} = \sqrt{2 G \frac{m}{r}} escape velocity TODO
5415824175 x(t) = A \cos(\omega t) TODO
5426308937 v = \frac{d}{t} TODO
5426418187 [A_{\rm adsorption}] TODO
5438722682 x = v_0 t \cos(\theta) + x_0 TODO
5453995431 \arctan{ x } TODO
5463275819 I_2 TODO
5514556106 E_2 - E_1 = (KE_2 - KE_1) + (PE_2 - PE_1) TODO
5516739892 -1
TODO
5530148480 \vec{p}_{1}-\vec{p}_{2} = \vec{p}_{electron} TODO
5542390646 2 a TODO
5542528160 \int dW = F \int_0^x dx TODO
5563580265 F_{\rm gravity} = G \frac{m_{\rm Earth} m_{\rm satellite}}{r^2} TODO
5585739998 I TODO
5586102077 r = d_1 + d_2 TODO
5591692598 KE_1 TODO
5596822289 W_{\rm to\ system} = -G m_1 m_2 \left(\left.\frac{-1}{x}\right|^r_{\infty}\right) TODO
5611024898 d = \frac{1}{2 a} (v^2 - v_0^2) TODO
5620558729 v_0 TODO
5623794884 A + B TODO
5632428182 \cos( \theta_{\rm Brewster} ) TODO
5634116660 \pi_T = \left(\frac{\partial U}{\partial V}\right)_T TODO definition of internal pressure at constant temperature
5646314683 m = A m_p TODO
5658865948 T^2 = \frac{r^3 4 \pi^2}{(m_1+m_2)G} TODO
5667870149 \theta TODO
5669500954 v^2 \gamma^2 TODO
5684907106 \frac{1}{d_2 4 \pi^2} TODO
5693047217 v_{\rm final} = -\sqrt{\frac{2 G m_2}{r}} TODO
5727578862 \frac{d^2}{dx^2} \psi(x) = -k^2 \psi(x) TODO
5732331610 W = G m_1 m_2 \left( \frac{1}{x} \bigg\rvert_{ r_{\rm Earth} }^{\infty} \right) TODO 2022-03-25 BHP: Conversion between Latex and Sympy is incomplete
5733146966 KE_2 - KE_1 = \frac{1}{2} m \left(v_2^2 - v_1^2\right) TODO
5733721198 d = \frac{1}{2} (v + v_0) \left( \frac{v - v_0}{a} \right) TODO
5763749235 -c^2 + c^2 \gamma^2 = v^2 \gamma^2 TODO
5770088141 r TODO
5775658332 2
TODO
5778176146 t TODO
5779256336 W_{\rm by\ system} = KE_{\rm final} - KE_{\rm initial} TODO
5781435087 g TODO
5781981178 x^2 - y^2 = (x+y)(x-y) difference of squares TODO Difference_of_two_squares
5787469164 1 - \gamma^2 TODO
5789289057 v = \alpha c \sqrt{ \frac{m_e}{2 m} } TODO equation 4 in the PDF
5799753649 2
TODO
5803210729 PE_2 TODO
5832984291 (\sin(x))^2 + (\cos(x))^2 = 1 TODO
5838268428 \alpha c = \frac{1}{4 \pi \epsilon_0} \frac{e^2}{\hbar} TODO
5846177002 t
TODO
5846639423 v_{\rm final} = \sqrt{\frac{2 G m_2}{r}} TODO
5850144586 W_{\rm by\ system} = KE_{\rm final} TODO
5857434758 \int a dx = a x TODO
5866629429 {\rm sech}^2\ x + \tanh^2(x) = 1 TODO
5868688585 \frac{-\hbar^2}{2m} \nabla^2 \psi \left( \vec{r},t \right) = \frac{p^2}{2m} \psi( \vec{r},t) TODO representing-laplace-operator-nabla-in.html
5868731041 v_0 TODO
5890617067 R TODO
5900595848 k = \frac{\omega}{v} TODO
5902985919 \vec{F} = G \frac{m_1 m_2}{x^2} \hat{x} Newton's law of universal gravitation TODO
5904227750 m TODO
5928285821 x^2 + 2 x (b/(2 a)) + (b/(2 a))^2 = (x + (b/(2 a)))^2 TODO
5928292841 x^2 + (b/a)x + (b/(2 a))^2 = -c/a + (b/(2 a))^2 TODO
5938459282 x^2 + (b/a)x = -c/a TODO
5945893986 \frac{d^2 x}{dt^2} = -A \omega^2 \cos(\omega t) TODO
5958392859 x^2 + (b/a)x+(c/a) = 0 TODO
5959282914 x^2 + x(b/a) + (b/(2 a))^2 = (x+(b/(2 a)))^2 TODO
5960438249 E_1 TODO
5962145508 \alpha = \frac{nR}{VP} TODO
5978756813 W = G m_{\rm Earth} m \left( 0 - \frac{-1}{ r_{\rm Earth}} \right) TODO
5982958248 x = -\sqrt{(b/(2 a))^2 - (c/a)}-(b/(2 a)) TODO
5982958249 x+(b/(2 a)) = -\sqrt{(b/(2 a))^2 - (c/a)} TODO
5985371230 \vec{ \nabla} \psi( \vec{r},t) = \frac{i}{\hbar} \vec{p} \psi( \vec{r},t) TODO
6023986360 x TODO
6026694087 F_{centripetal} = m \frac{v^2}{r} TODO
6031385191 \sinh^2 x = \left(\frac{\exp(x) - \exp(-x)}{2}\right)\left(\frac{\exp(x) - \exp(-x)}{2}\right) TODO
6038673136 v TODO
6050070428 v_{0, x} TODO
6055078815 \left(\frac{\partial U}{\partial T}\right)_p = C_V \left(\frac{\partial T}{\partial T}\right)_p + \pi_T \left( \frac{\partial V}{\partial T} \right)_p TODO constant pressure
6061695358 V_2 = I R_2 TODO
6083821265 v_0 \cos(\theta) = v_{0, x} TODO
6091977310 KE_{\rm initial} = \frac{1}{2} m_1 v_{\rm initial}^2 TODO
6098638221 y_0 TODO
6131764194 W = G m_{\rm Earth} m \left( \frac{1}{x^2} \bigg\rvert_{ r_{\rm Earth} }^{\infty} \right) TODO evaluating-definite-integrals-for.html
6134836751 v_{0, x} = v_x TODO
6158970683 PE_1 TODO
6175547907 v_{\rm average} = \frac{v + v_0}{2} TODO
6204539227 -g t + v_{0, y} = \frac{dy}{dt} TODO
6238632840 r T_{\rm orbit}^2 TODO
6239815585 C_{\rm Earth\ orbit} TODO
6240206408 I_{\rm incoherent} = |A|^2 + |B|^2 TODO
6240546932 \frac{1}{K_{equilibrium}} = \frac{k_{\rm desorption}}{k_{\rm adsorption}} TODO
6259833695 A TODO
6268336290 F_{gravitational} = \frac{m}{r}\left(\frac{2\pi r}{T}\right)^2 TODO
6281834543 m_1 TODO
6296166842 P TODO
6306552185 I = (A + B)(A^* + B^*) TODO
6346902704 1
TODO
6348260313 C_{\rm Earth\ orbit} = 2 \pi r_{\rm Earth\ orbit} TODO
6353701615 \theta_{\rm refracted} TODO
6383056612 KE TODO
6397683463 V \alpha = \left( \frac{\partial V}{\partial T} \right)_p TODO
6404535647 \cosh x = \frac{\exp(x) + \exp(-x)}{2} TODO
6408214498 c^2 TODO
6410818363 \theta TODO
6417359412 v_0 TODO
6421241247 d = v t - \frac{1}{2} a t^2 TODO
6450985774 n_1 \sin( \theta_1 ) = n_2 \sin( \theta_2 ) Law of Refraction TODO eq 34-44 on page 819 in \cite{2001_HRW}
6457044853 v - a t = v_0 TODO
6457999644 \frac{[S_0]}{[A_{\rm adsorption}]} = \frac{1}{K_{\rm equilibrium}} \frac{1}{p_A} + 1 TODO
6463266449 t_f TODO
6498985149 v_{\rm escape} TODO
6504442697 v = \sqrt{ \frac{K}{\rho} } TODO
6529120965 B TODO
6529793063 I_{\rm incoherent} = |A|^2 + |A|^2 TODO
6535639720 r_{\rm Earth} TODO
6546594355 R_{\rm total} TODO
6554292307 t TODO
6555185548 A^* = |A| \exp(-i \theta) TODO
6556875579 \frac{I_{\rm coherent}}{I_{\rm incoherent}} = 2 TODO
6572039835 -g t + v_{0, y} = v_y TODO
6599829782 v_{\rm final} TODO
6672141531 dt TODO
6681646197 v TODO
6701855578 v_2 TODO
6715248283 PE = -F x potential energy TODO Potential_energy
6729698807 v_0 TODO
6732786762 t TODO
6742123016 \vec{p}_{electron}\cdot\vec{p}_{electron} = ( \vec{p}_{1}\cdot\vec{p}_{1})+( \vec{p}_{2}\cdot\vec{p}_{2})-2( \vec{p}_{1}\cdot\vec{p}_{2}) TODO
6749533119 PE_1 TODO
6753224061 I_{\rm total} = I_1 + I_2 TODO
6774684564 \theta = \phi TODO for coherent waves
6783009163 r_{\rm adsorption} = r_{\rm desorption} TODO
6785303857 C = 2 \pi r TODO
6800170830 r_{\rm Schwarzschild} = \frac{2 G m}{c^2} TODO
6829281943 F_{\rm centripetal} = G \frac{m_1 m_2}{r^2} TODO
6831637424 \sin( 90^{\circ} - \theta_{\rm Brewster} ) = \cos( \theta_{\rm Brewster} ) TODO
6831694380 a = \frac{d^2 x}{dt^2}
acceleration TODO
6838659900 KE_2 TODO
6870322215 KE_{\rm escape} = \frac{1}{2} m v_{\rm escape}^2 TODO
6885625907 \exp(i \pi) = -1 + i 0 TODO
6892595652 \frac{1}{2} m_1 v_{\rm final}^2 = \frac{G m_1 m_2}{r} TODO
6908055431 x(t) = A \cos\left(\frac{k}{m} t\right) TODO
6925244346 \alpha = \frac{PV}{T} \frac{1}{VP} TODO
6935745841 F = G \frac{m_1 m_2}{x^2} Newton's law of universal gravitation TODO Newton%27s_law_of_universal_gravitation#Modern_form
6946088325 v = \frac{C}{t} TODO
6955192897 r_{\rm desorption} = k_{\rm desorption} [A_{\rm adsorption}] TODO
6964468708 KE_1 TODO
6974054946 \frac{1}{2} g t_f TODO
6976493023 x TODO
6998364753 v_{\rm Earth\ orbit} = \frac{2 \pi \left( 1.496\ 10^8 {\rm km} \right)}{3.16\ 10^7 {\rm seconds}} TODO
7002609475 \frac{V}{R_2} = I_2 TODO
7010294143 T_{\rm orbit}^2 G m_{\rm Earth} = 4 \pi^2 r^3 TODO
7011114072 d = \frac{(v_0 + a t) + v_0}{2} t TODO
7049769409 2
TODO
7053449926 r_{\rm geostationary\ orbit} TODO
7057864873 y' = y TODO frame of reference is moving only along x direction
7083390553 t TODO
7107090465 B B^* = |B|^2 TODO
7112613117 m_{\rm Earth} = \frac{(9.80665 m/s^2) r_{\rm Earth}^2}{6.67430*10^{-11}m^3 kg^{-1} s^{-2}} TODO
7112646057 v_{\rm final}^2 = \frac{2 G m_2}{r} TODO
7140470627 m TODO
7154592211 \theta_2 TODO
7159989263 i x TODO
7175416299 t_{\rm Earth\ orbit} = 1 {\rm year} TODO
7191277455 R TODO
7194432406 r_{\rm Schwarzschild} TODO
7214442790 x TODO
7215099603 v^2 = v_0^2 + 2 a t v_0 + a^2 t^2 TODO
7217021879 R_{\rm total} = R_1 + R_2 TODO
7233558441 d = v_0 t_f \cos(\theta) TODO
7252338326 v_y = \frac{dy}{dt} TODO
7263534144 c^2 TODO
7267155233 \frac{PE_2 - PE_1}{t} = -F \left( \frac{x_2 - x_1}{t} \right) TODO
7267424860 \frac{1}{\theta_A} = \frac{1+(K_{\rm equilibrium}\ p_A)}{K_{\rm equilibrium}\ p_A} TODO
7321695558 \theta_{\rm Brewster} TODO
7326066466 G TODO
7337056406 \gamma^2 x TODO
7354529102 y = - \frac{1}{2} g \left( \frac{x - x_0}{v_{0, x}} \right)^2 + v_{0, y} \frac{x - x_0}{v_{0, x}} + y_0 TODO
7375348852 \theta_{\rm Brewster} TODO
7376526845 \sin(\theta) = \frac{v_{0, y}}{v_0} TODO
7391837535 \cos(\theta) = \frac{v_{0, x}}{v_0} TODO
7410124465 R_{\rm total} TODO
7410526982 2/m_1 TODO
7445388869 -1
TODO
7453225570 x TODO
7455581657 v_{0, x} = \frac{dx}{dt} TODO
7466829492 \vec{ \nabla} \cdot \vec{E} = 0 TODO
7473576008 \frac{-1}{A \cos(\omega t)} TODO
7476820482 C TODO
7497687256 V TODO
7513513483 \gamma^2 (c^2 - v^2) = c^2 TODO
7517073655 [S_0] = \left(\frac{1}{K_{\rm equilibrium}} \frac{1}{p_A} + 1\right)[A_{\rm adsorption}] TODO
7556442438 4 \pi^2 TODO
7560908617 m TODO
7564010952 -1
TODO
7564894985 \int \cos\left(\frac{2n\pi}{W} x\right) dx = \frac{W}{2n\pi}\sin\left(\frac{2n\pi}{W} x\right) TODO
7572664728 \cos(2 x) + 2 (\sin(x))^2 = 1 TODO
7573835180 PE_{\rm Earth\ surface} = -W TODO the potential energy at the surface of the Earth is equal to the work needed to get it from the center of the Earth to the surface
7575738420 \left(\sin\left(\frac{n \pi}{W}x\right) \right)^2 = \frac{1-\cos\left(2\frac{n \pi}{W}x\right)}{2} TODO
7575859295 \vec{ \nabla} \times \vec{ \nabla} \times \vec{E} = \vec{ \nabla}( \vec{ \nabla} \cdot \vec{E} - \nabla^2 \vec{E}) TODO
7575859300 \epsilon^{i,j,k} \hat{x}_i \nabla_j ( \vec{ \nabla} \times \vec{E} )_k = \vec{ \nabla}( \vec{ \nabla} \cdot \vec{E} - \nabla^2 \vec{E}) TODO
7575859302 \epsilon^{i,j,k} \epsilon_{n,j,k} \hat{x}_i \nabla_j \nabla^m E^n = \vec{ \nabla}( \vec{ \nabla} \cdot \vec{E} - \nabla^2 \vec{E}) TODO
7575859304 \epsilon^{i,j,k} \epsilon_{n,j,k} = \delta^{l}_{\ \ j} \delta^{m}_{\ \ k} - \delta^{l}_{\ \ k} \delta^{m}_{\ \ h} TODO Covariance_and_contravariance_of_vectors
7575859306 \left( \delta^{l}_{\ \ j} \delta^{m}_{\ \ k} - \delta^{l}_{\ \ k} \delta^{m}_{\ \ h} \right) \hat{x}_i \nabla_j \nabla^m E^n = \vec{ \nabla}( \vec{ \nabla} \cdot \vec{E} - \nabla^2 \vec{E}) TODO Covariance_and_contravariance_of_vectors
7575859308 \left( \delta^{l}_{\ \ j} \delta^{m}_{\ \ k} \hat{x}_i \nabla_j \nabla^m E^n\right)-\left( \delta^{l}_{\ \ k} \delta^{m}_{\ \ h} \hat{x}_i \nabla_j \nabla^m E^n \right) = \vec{ \nabla}( \vec{ \nabla} \cdot \vec{E} - \nabla^2 \vec{E}) TODO Covariance_and_contravariance_of_vectors
7575859310 \hat{x}_m \nabla_n \nabla^m E^n - \hat{x}_n \nabla_m \nabla^m E^n = \vec{ \nabla}( \vec{ \nabla} \cdot \vec{E} - \nabla^2 \vec{E}) TODO
7575859312 \vec{ \nabla}( \vec{ \nabla} \cdot \vec{E} - \nabla^2 \vec{E}) = \vec{ \nabla}( \vec{ \nabla} \cdot \vec{E} - \nabla^2 \vec{E})
TODO
7587034465 \theta TODO
7607271250 \theta TODO
7621705408 I = |A|^2 + |B|^2 + |A| |B| \exp(-i \theta) \exp(i \phi) + |A| |B| \exp(i \theta) \exp(-i \phi) TODO
7630953440 \frac{K_{\rm equilibrium} p_A}{K_{\rm equilibrium} p_A} TODO
7652131521 \frac{dx}{dt} = -A \omega \sin (\omega t) TODO
7672365885 F_{gravitational} = \frac{4 \pi^2 m r}{T^2} TODO
7675171493 V_1 = I R_1 TODO
7676652285 KE_2 = \frac{1}{2} m v_2^2 TODO
7696214507 n_1 \sin( \theta_{\rm Brewster} ) = n_2 \sin( 90^{\circ} - \theta_{\rm Brewster} ) TODO
7701249282 v_u = \alpha c \sqrt{ \frac{m_e}{m_p} } TODO when A = 1
7708501762 C_{\rm Earth\ orbit} TODO
7729413831 a_x \hat{x} + a_y \hat{y} = \frac{d}{dt} \left(v_x \hat{x} + v_y \hat{y} \right) TODO
7731226616 {\rm sech}\ x = \frac{1}{\cosh x} TODO
7734996511 PE_2 - PE_1 = -F ( x_2 - x_1 ) TODO
7735731560 \cosh^2 x - \sinh^2 x = \frac{1}{4}\left( \exp(2x)+1+1+\exp(-2x) - \left(\exp(2x)-1-1-\exp(-2x)\right) \right) TODO  
7735737409 \frac{KE_2 - KE_1}{t} = m v \frac{ v_2 - v_1 }{t} TODO
7741202861 x = \gamma^2 x - \gamma^2 v t + \gamma v t' TODO
7743841045 \gamma^2 TODO
7749253510 W = G \frac{m_{\rm Earth} m }{ r_{\rm Earth}} TODO
7774819339 R TODO
7798615279 I_{\rm total} TODO
7816982139 m/s^2
TODO
7819443873 r TODO
7826132469 \left(\frac{\partial U}{\partial T}\right)_p = C_V + \pi_T V \alpha TODO
7837519722 v = \sqrt{f} \sqrt{\frac{E}{m}} TODO
7844317489 I TODO
7846240076 m_{\rm Earth} = \frac{(9.80665 m/s^2) r_{\rm Earth}^2}{G} TODO
7857757625 n_1 TODO
7875206161 E_2 = KE_2 + PE_2 TODO
7882872592 W_{\rm to\ system} = \int_{\infty}^r \vec{F}\cdot d\vec{r} TODO
7905984866 m_1 TODO
7906112355 \gamma^2 = \frac{c^2}{c^2 - \gamma^2} TODO
7912578203 v TODO
7917051060 \vec{p}_{electron} = \vec{p}_{1}-\vec{p}_{2} TODO
7924063906 K_{equilibrium} = \frac{k_{\rm adsorption}}{k_{\rm desorption}} TODO
7924842770 T TODO
7928111771 \frac{1}{\theta_A} = \frac{1}{K_{\rm equilibrium} p_A} + 1 TODO
7935917166 r_{\rm Earth} TODO
7939765107 v^2 = v_0^2 + 2 a d TODO
7939947931 KE_2 TODO
8014566709 \gamma^2 v t TODO
8020058613 r TODO
8044416349 d_2 TODO
8046208134 I_{\rm coherent} = |A|^2 + |A|^2 + |A| |A| 2 TODO
8049905441 \Delta KE = KE_{\rm final} - KE_{\rm initial} change in kinetic energy TODO
8059639673 v^2 = \frac{4 \pi^2 r^2}{T_{\rm orbit}^2} TODO
8061701434 PE_1 TODO
8065128065 I = A A^* + B B^* + A B^* + B A^* TODO
8066819515 v TODO
8072682558 x_0 TODO
8090924099 v = \sqrt{ \left( f\frac{E}{a^3} \right) \frac{1}{\rho} } TODO
8106885760 \alpha = \frac{1}{4 \pi \epsilon_0} \frac{e^2}{\hbar c} TODO fine structure constant definition
8111389082 x TODO
8120663858 y_f TODO
8122039815 \frac{d_1+d_2}{d_1+d_2} TODO
8131665171 \frac{1}{\theta_A} = \frac{[S_0]}{[A_{\rm adsorption}]} TODO
8135396036 t TODO
8139187332 \vec{p}_{1} = \vec{p}_{2}+\vec{p}_{electron} TODO
8145337879 -g t dt + v_{0, y} dt = dy TODO
8162179726 k_{\rm adsorption} p_A TODO
8173074178 x TODO
8198310977 0 = - \frac{1}{2} g t_f^2 + v_0 t_f \sin(\theta) + y_0 TODO
8228733125 a_y = \frac{d}{dt} v_y TODO
8257621077 \vec{p}_{\rm before} = \vec{p}_{1} TODO
8269198922 2 a d = v^2 - v_0^2 TODO
8283354808 I_{\rm coherent} = |A|^2 + |B|^2 + |A| |B| 2 \cos( 0 ) TODO
8311458118 \vec{p}_{\rm after} = \vec{p}_{2}+\vec{p}_{electron} TODO
8332931442 \exp(i \pi) = \cos(\pi)+i \sin(\pi) TODO
8357234146 KE = \frac{1}{2} m v^2 kinetic energy TODO Kinetic_energy
8360117126 \gamma = \frac{-1}{\sqrt{1-\frac{v^2}{c^2}}} TODO not a physically valid result in this context
8361238989 a_{centripetal} = \frac{v^2}{r} TODO
8362338572 v_{\rm escape} TODO
8368984890 \kappa_T = \frac{-1}{V} \left( \frac{ \partial }{\partial P}\left(\frac{nRT}{P}\right) \right)_T TODO
8396997949 I = | A + B |^2 TODO intensity of two waves traveling opposite directions on same path
8399484849 \langle x^2 - 2 x \langle x \rangle + \langle x \rangle^2 \rangle = \langle x^2 \rangle-\langle x \rangle^2 TODO
8405272745 W_{\rm to\ system} = -G m_1 m_2\int_{\infty}^r \frac{1}{x^2} dx TODO
8406170337 y TODO
8416464049 KE_{\rm escape} TODO
8418527415 \sin(i x) = i \sinh(x) TODO
8435841627 P V = n R T TODO Ideal_gas_law
8460820419 v_x = \frac{dx}{dt} TODO
8483686863 \sin(2 x) = \frac{1}{2i}\left(\exp(i 2 x)-\exp(-i 2 x) \right) TODO
8484544728 -a k^2\sin(k x) + -b k^2\cos(k x) = -a k^2 \sin(kx) + -b k^2 \cos(k x) TODO
8485757728 a \frac{d^2}{dx^2}\sin(kx) + b \frac{d^2}{dx^2}\cos(k x) = -a k^2 \sin(kx) + -b k^2 \cos(kx) TODO
8485867742 \frac{2}{W} = a^2 TODO
8486706976 v_{0, x} t + x_0 = x TODO
8489593958 d(u v) = u dv + v du TODO
8489593960 d(u v) - v du = u dv TODO
8489593962 u dv = d(u v) - v du TODO
8489593964 \int u dv = u v - \int v du TODO
8494839423 \nabla^2 \vec{E} = \mu_0 \epsilon_0 \frac{\partial^2 \vec{E}}{\partial t^2} TODO
8495187962 \theta_{\rm Brewster} = \arctan{ \left( \frac{ n_1 }{ n_2 } \right) } TODO
8497631728 I = |A|^2 + |B|^2 + |A| |B| 2 \cos( \theta - \phi ) TODO
8515803375 z' = z TODO frame of reference is moving only along x direction
8532702080 \cosh^2 x = \left(\frac{\exp(x) + \exp(-x)}{2}\right)\left(\frac{\exp(x) + \exp(-x)}{2}\right) TODO
8552710882 KE_{\rm final} = \frac{1}{2} m_1 v_{\rm final}^2 TODO
8558338742 E_2 = E_1 conservation of energy TODO Conservation_of_energy
8563535636 \cosh^2 x - \sinh^2 x = \left(\frac{\exp(x) + \exp(-x)}{2}\right)\left(\frac{\exp(x) + \exp(-x)}{2}\right) - \left(\frac{\exp(x) - \exp(-x)}{2}\right)\left(\frac{\exp(x) - \exp(-x)}{2}\right) TODO
8571466509 c^2 - \gamma^2 TODO
8572657110 1 = \int |\psi(x)|^2 dx TODO
8572852424 \vec{E} = E( \vec{r},t) TODO
8575746378 \int \frac{1}{2} dx = \frac{1}{2} x TODO
8575748999 \frac{d^2}{dx^2} \left(a \sin(k x) + b \cos(k x) \right) = -k^2 \left(a \sin(kx) + b \cos(kx) \right) TODO
8576785890 1 = \int_0^W a^2 \frac{1-\cos\left(2\frac{n \pi}{W}x\right)}{2} dx TODO
8577275751 0 = a \sin(0) + b\cos(0) TODO
8582885111 \psi(x) = a \sin(kx) + b \cos(kx) TODO
8582954722 x^2 + 2 x h + h^2 = (x + h)^2 TODO
8584698994 -g \int dt = \int d v_y TODO
8588429722 \sin( 90^{\circ} - x ) = \cos( x ) TODO
8602221482 \langle \cos(\theta - \phi) \rangle = 0 TODO incoherent light source
8602512487 \vec{a} = a_x \hat{x} + a_y \hat{y} TODO decompose acceleration into two components
8604483515 dW = G \frac{m_1 m_2}{x^2} dx TODO
8607458157 dt TODO
8642992037 2
TODO
8651044341 \cos(i x) = \frac{1}{2} \left( \exp(-x) + \exp(x) \right) TODO
8655294002 a = -\frac{k}{m}x TODO
8661803554 F = G \frac{m_{\rm Earth} m}{r_{\rm Earth}^2} TODO
8688588981 a^3 \rho = m TODO
8699789241 2 \sin(x) \cos(x) = \frac{1}{2 i} \left( \exp(i 2 x) - 1 + 1 - \exp(-i 2 x) \right) TODO
8706092970 d = \left(\frac{v + v_0}{2}\right)t TODO
8710504862 A TODO
8717193282 dt TODO
8721295221 t_{\rm Earth\ orbit} = 3.16 10^7 {\rm seconds} TODO
8730201316 \frac{\gamma x (1 - \gamma^2 )}{\gamma^2 v} + \gamma t = t' TODO first term was multiplied by \gamma/\gamma
8747785338 \cos(i x) = \cosh(x) TODO
8750379055 0 = \frac{d}{dt} v_x TODO
8808860551 -g \int t dt + v_{0, y} \int dt = \int dy TODO
8849289982 \psi(x)^* = a \sin(\frac{n \pi}{W} x) TODO
8854422847 dT TODO
8857931498 c TODO
8865085668 t TODO
8871333437 PE_{\rm Earth\ surface} TODO
8880467139 2
TODO
8889444440 1 = \int_0^W a^2 \left(\sin\left(\frac{n \pi}{W} x\right) \right)^2 dx TODO
8908736791 \rho = \frac{m}{a^3} TODO geometry
8916428651 m TODO
8922441655 d = \frac{v_0^2}{g} \sin(2 \theta) TODO
8945218208 \theta_{\rm Brewster} + \theta_{\rm refracted} = 90^{\circ} TODO based on figure 34-27 on page 824 in \cite{2001_HRW}
8946383937 v_{\rm escape}^2 = 2 G \frac{m}{r} TODO
8949329361 v_0 \sin(\theta) = v_{0, y} TODO
8953094349 W = m a x TODO
8960645192 KE_2 + PE_2 = KE_1 + PE_1 TODO
8991236357 \frac{d^2 x}{dt^2} = -\frac{k}{m} x TODO
9025853427 \theta_{\rm Brewster} TODO
9029795851 \theta_{\rm Brewster} TODO
9031609275 x (1 - \gamma^2 ) = - \gamma^2 v t + \gamma v t' TODO
9040079362 f TODO
9053099840 I TODO
9059289981 \psi(x) = a \sin(k x) TODO
9063568209 V_{\rm total} = V_1 + V_2 TODO
9070394000 m_2 d_2 \frac{4 \pi^2}{T^2} = G \frac{m_1 m_2}{r^2} TODO
9070454719 v_0^2 TODO
9072369552 m_{\rm Earth} TODO
9081138616 W_{\rm by\ system} = \frac{1}{2} m_1 v_{\rm final}^2 TODO
9110536742 2 x TODO
9112191201 y_f = 0 TODO
9152823411 \frac{1}{T^2} = \frac{1}{d_2 4 \pi^2} G \frac{m_1}{r^2} TODO
9170048197 T^2 = d_2 4 \pi^2 \frac{r^2}{G m_1} TODO
9174439158 R_1 TODO
9180861128 2 \sin(x) \cos(x) = \frac{1}{2 i} \left( \exp(i 2 x) - \exp(-i 2 x) \right) TODO
9191880568 Z Z^* = |Z| |Z| \exp( -i \theta ) \exp( i \theta ) TODO
9226945488 F = \frac{m v^2}{r} Centripetal force TODO Centripetal_force
9243879541 V = I_2 R_2 TODO
9262596735 d = 2 \pi r TODO
9285928292 ax^2 + bx + c = 0 TODO
9291999979 \vec{ \nabla} \times \vec{ \nabla} \times \vec{E} = -\mu_0\vec{ \nabla} \times \frac{\partial \vec{H}}{\partial t} TODO
9294858532 \hat{A}^+ = \hat{A} TODO
9305761407 v TODO
9337785146 v = \frac{x_2 - x_1}{t} average velocity TODO
9341391925 \vec{v}_0 = v_{0, x} \hat{x} + v_{0, y} \hat{y} TODO
9346215480 T_{\rm orbit} TODO
9350663581 \pi TODO
9350720370 m TODO
9355039511 g TODO
9356924046 \frac{KE_2 - KE_1}{t} = m \frac{v_2 + v_1}{2} \frac{ v_2 - v_1 }{t} TODO
9370882921 KE_{\rm escape} TODO
9376481176 K = f \frac{E}{a^3} TODO proportionality coefficient fvaries in the range 1-4 for a majority of elemental solids
9385938295 (x+(b/(2 a)))^2 = -(c/a) + (b/(2 a))^2 TODO
9393939991 \psi(x) = -\sqrt{\frac{2}{W}} \sin\left(\frac{n \pi}{W} x\right) TODO
9393939992 \psi(x) = \sqrt{\frac{2}{W}} \sin\left(\frac{n \pi}{W} x\right) TODO
9394939493 \nabla^2 E( \vec{r},t) = \mu_0 \epsilon_0 \frac{\partial^2}{\partial t^2} E( \vec{r},t) TODO
9397152918 v = \frac{v_1 + v_2}{2} average velocity TODO
9407192813 G \frac{m_{\rm Earth} m}{r_{\rm Earth}^2} = m g_{\rm Earth} TODO
9409776983 x (1 - \gamma^2 ) + \gamma^2 v t = \gamma v t' TODO
9412953728 v_{\rm escape}^2 = 2 G \frac{m_{\rm Earth}}{r_{\rm Earth}} TODO
9413609246 \cosh^2 x - \sinh^2 x = 1 TODO
9413699705 W = m a \frac{v_2^2 - v_1^2}{2 a} TODO
9429829482 \frac{d}{dx} y = -\sin(x) + i\cos(x) TODO
9440616166 m_{\rm Earth} = \frac{g_{\rm Earth} r_{\rm Earth}^2}{G} TODO
9482113948 \frac{dy}{y} = i dx TODO
9482438243 (\cos(x))^2 = \cos(2 x) + (\sin(x))^2 TODO
9482923849 \exp(i x) = y TODO
9482928242 \cos(2 x) = (\cos(x))^2 - (\sin(x))^2 TODO
9482928243 \cos(2 x) + (\sin(x))^2 = (\cos(x))^2 TODO
9482943948 \log(y) = i dx TODO
9482984922 \frac{d}{dx} y = (i\sin(x) + \cos(x)) i TODO
9483928192 \cos(2 x) + i\sin(2 x) = (\cos(x))^2 + 2 i \cos(x) \sin(x) - (\sin(x))^2 TODO
9485384858 \nabla^2 E( \vec{r})\exp(i \omega t) = - \frac{\omega^2}{c^2} E( \vec{r})\exp(i \omega t) TODO
9485747245 \sqrt{\frac{2}{W}} = a TODO
9485747246 -\sqrt{\frac{2}{W}} = a TODO
9492920340 y = \cos(x)+i \sin(x) TODO
9495857278 \psi(x=W) = 0 TODO 2022-03-25 BHP: Conversion between Latex and Sympy is incomplete
9499428242 E( \vec{r},t) = E( \vec{r})\exp(i \omega t) TODO
9510328252 KE_{\rm initial} = 0 TODO
9524810853 \frac{1/d_2}{1/d_2} TODO
9562264720 [S] = \frac{k_{\rm desorption} [A_{\rm adsorption}]}{k_{\rm adsorption} p_A} TODO
9565166889 T TODO
9582958293 x = \sqrt{(b/(2 a))^2 - (c/a)}-(b/(2 a)) TODO
9582958294 x+(b/(2 a)) = \sqrt{(b/(2 a))^2 - (c/a)} TODO
9585727710 \psi(x=0) = 0 TODO
9590696981 9.80665
TODO
9594072504 m_2 TODO
9596004948 x = \langle\psi_{\alpha}| \hat{A} |\psi_{\beta}\rangle TODO
9601500174 v_{\rm Earth\ orbit} TODO
9623791270 d TODO
9640720571 v = \frac{e^2}{4 \pi \epsilon_0 \hbar} \sqrt{\frac{m_e}{2 m}} TODO
9645178657 a t TODO
9658195023 d = v_0 t + \frac{1}{2} a t^2 TODO
9674924517 K >> G TODO yfN-LaW1BQAJ
9703482302 G \frac{m_{\rm Earth} m}{r_{\rm Earth}} = \frac{1}{2} m v_{\rm escape}^2 TODO
9707028061 a_x = 0 TODO
9718685793 \kappa_T = \frac{1}{P} TODO
9746066299 R_2 TODO
9749777192 0 = KE_1 + PE_1 TODO
9753878784 v TODO
9756089533 \sin( \theta_{\rm Brewster} ) = \frac{n_2}{n_1} \cos( \theta_{\rm Brewster} ) TODO
9759901995 v - v_0 = a t TODO
9761485403 Z TODO
9781951738 \kappa_T = \frac{-1}{V} \left( \frac{ \partial V}{\partial P} \right)_T TODO definition of isothermal compressibility
9789485295 v_{\rm satellite} TODO
9794128647 m_1 TODO
9805063945 \gamma^2 (x - v t)^2 + y^2 + z^2 = c^2 \gamma^2 \left( t + \frac{ 1 - \gamma^2 }{ \gamma^2 } \frac{x}{v} \right)^2 TODO
9830343096 V_1 TODO
9838128064 d_2 \frac{4 \pi^2}{T^2} = G \frac{m_1}{r^2} TODO
9847143017 \kappa_T = \frac{-PV}{V} \left( \frac{-1}{P^2}\right) TODO
9848292229 dy = y i dx TODO
9848294829 \frac{d}{dx} y = y i TODO
9854442418 v = \sqrt{\frac{E}{m}} TODO
9858028950 \frac{1}{a^2} = \int_0^W \frac{1-\cos\left(2\frac{n \pi}{W}x\right)}{2} dx TODO
9862900242 y = - \frac{1}{2} g t^2 + v_0 t \sin(\theta) + y_0 TODO
9881106100 a TODO
9882526611 v_{0, x} t = x - x_0 TODO
9884115626 r TODO
9885190237 i TODO
9889984281 2 (\sin(x))^2 = 1 - \cos(2 x) TODO
9894826550 2 \sin(x) \cos(x) = \frac{1}{2i}\left(\exp(i x)-\exp(-i x) \right) \left(\exp(i x)+\exp(-i x) \right) TODO
9897284307 \frac{d}{t} = \frac{v + v_0}{2} TODO
9903988330 m TODO
9906920183 x TODO
9919999981 \rho = 0 TODO
9933742680 r_{\rm Schwarzschild} TODO
9941599459 dU = \left(\frac{\partial U}{\partial T}\right)_V dT + \left(\frac{\partial U}{\partial V}\right)_T dV TODO based on U(p, T, V) = U(T, V)
9956609318 6.67430*10^{-11}
TODO
9958485859 \frac{-\hbar^2}{2m} \nabla^2 \psi \left( \vec{r},t \right) = i \hbar \frac{\partial}{\partial t} \psi( \vec{r},t) TODO
9973952056 -g t = v_y - v_{0, y} TODO
9988949211 (\sin(x))^2 = \frac{1 - \cos(2 x)}{2} TODO
9991999979 \vec{ \nabla} \times \vec{E} = -\mu_0\frac{\partial \vec{H}}{\partial t} TODO
9999998870 \frac{ \vec{p}}{\hbar} = \vec{k} TODO
9999999870 \frac{p}{\hbar} = k TODO
9999999960 \hbar = h/(2 \pi) TODO
9999999961 \frac{E}{\hbar} = \omega TODO
9999999962 p = \hbar k TODO
9999999965 E = \omega \hbar TODO
9999999968 x = \frac{-b-\sqrt{b^2-4ac}}{2 a} TODO
9999999969 x = \frac{-b+\sqrt{b^2-4ac}}{2 a} TODO
9999999975 \langle \psi| \hat{A} |\psi \rangle = \langle a \rangle TODO
9999999981 \vec{ \nabla} \cdot \vec{E} = \rho/\epsilon_0 TODO
Physics Derivation Graph: 988 Expressions

Delete an expression

This action requires you to be signed in

Edit the name of an expression

This action requires you to be signed in

Add a symbol to the AST for an expression

This action requires you to be signed in

Remove symbol from the AST for an expression

This action requires you to be signed in

Edit the latex for an expression

This action requires you to be signed in

Edit the note for an expression

This action requires you to be signed in