MESSAGES:

Return to navigation page or list derivations

Review angle of maximum distance for projectile motion

step inference rule input feed output validity (as per SymPy)
7
  • ID: 111975; divide both sides by
  • number of inputs: 1; feeds: 1; outputs: 1
  • Divide both sides of Eq.~\\ref{eq:#2} by $#1$; yields Eq.~\\ref{eq:#3}.
  1. 1087417579
    \(0=- \frac{1}{2} g t_f^2 + v_0 t_f \sin(\theta)\)
  1. 4829590294
    \(t_f\)
  1. 2086924031
    \(0=- \frac{1}{2} g t_f + v_0 \sin(\theta)\)
valid
4
  • ID: 111355; LHS of expr 1 equals LHS of expr 2
  • number of inputs: 2; feeds: 0; outputs: 1
  • LHS of Eq.~\\ref{eq:#1} is equal to LHS of Eq.~\\ref{eq:#2}; yields Eq.~\\ref{eq:#3}.
  1. 9112191201
    \(y_f=0\)
  1. 5379546684
    \(y_f=- \frac{1}{2} g t_f^2 + v_0 t_f \sin(\theta) + y_0\)
  1. 8198310977
    \(0=- \frac{1}{2} g t_f^2 + v_0 t_f \sin(\theta) + y_0\)
valid
22
  • ID: 111341; declare final expression
  • number of inputs: 1; feeds: 0; outputs: 0
  • Eq.~\\ref{eq:#1} is one of the final equations.
  1. 5353282496
    \(d=\frac{v_0^2}{g}\)
no validation is available for declarations
16
  • ID: 111981; declare initial expression
  • number of inputs: 0; feeds: 0; outputs: 1
  • Eq.~\\ref{eq:#1} is an initial equation.
  1. 2405307372
    \(\sin(2 x)=2 \sin(x) \cos(x)\)
no validation is available for declarations
10
  • ID: 111981; declare initial expression
  • number of inputs: 0; feeds: 0; outputs: 1
  • Eq.~\\ref{eq:#1} is an initial equation.
  1. 5438722682
    \(x=v_0 t \cos(\theta) + x_0\)
no validation is available for declarations
21
  • ID: 111457; simplify
  • number of inputs: 1; feeds: 0; outputs: 1
  • Simplify Eq.~\\ref{eq:#1}; yields Eq.~\\ref{eq:#2}.
  1. 3607070319
    \(d=\frac{v_0^2}{g} \sin\left(2 \frac{\pi}{4}\right)\)
  1. 5353282496
    \(d=\frac{v_0^2}{g}\)
LHS diff is 0 RHS diff is pdg0005153**2*(sin(pdg0003141/2) - 1)/pdg0001649
12
  • ID: 111278; boundary condition
  • number of inputs: 1; feeds: 0; outputs: 1
  • Boundary condition: Eq.~\\ref{eq:#2} when Eq.~\\ref{eq#1}.
  1. 4370074654
    \(t=t_f\)
  1. 2378095808
    \(x_f=x_0 + d\)
no validation is available for assumptions
13
  • ID: 111556; substitute LHS of expr 1 into expr 2
  • number of inputs: 2; feeds: 0; outputs: 1
  • Substitute LHS of Eq.~\\ref{eq:#1} into Eq.~\\ref{eq:#2}; yields Eq.~\\ref{eq:#3}.
  1. 3485125659
    \(x_f=v_0 t_f \cos(\theta) + x_0\)
  1. 2378095808
    \(x_f=x_0 + d\)
  1. 4268085801
    \(x_0 + d=v_0 t_f \cos(\theta) + x_0\)
LHS diff is -pdg0001943 + pdg0002467*pdg0005153*cos(pdg0001575) RHS diff is pdg0001943 - pdg0002467*pdg0005153*cos(pdg0001575)
14
  • ID: 111282; subtract X from both sides
  • number of inputs: 1; feeds: 1; outputs: 1
  • Subtract $#1$ from both sides of Eq.~\\ref{eq:#2}; yields Eq.~\\ref{eq:#3}.
  1. 4268085801
    \(x_0 + d=v_0 t_f \cos(\theta) + x_0\)
  1. 8072682558
    \(x_0\)
  1. 7233558441
    \(d=v_0 t_f \cos(\theta)\)
valid
11
  • ID: 111984; change two variables in expression
  • number of inputs: 1; feeds: 4; outputs: 1
  • Change variable $#1$ to $#2$ and $#3$ to $#4$ in Eq.~\\ref{eq:#5}; yields Eq.~\\ref{eq:#6}.
  1. 5438722682
    \(x=v_0 t \cos(\theta) + x_0\)
  1. 6732786762
    \(t\)
  1. 5194141542
    \(x_f\)
  1. 6463266449
    \(t_f\)
  1. 3273630811
    \(x\)
  1. 3485125659
    \(x_f=v_0 t_f \cos(\theta) + x_0\)
list index out of range
2
  • ID: 111984; change two variables in expression
  • number of inputs: 1; feeds: 4; outputs: 1
  • Change variable $#1$ to $#2$ and $#3$ to $#4$ in Eq.~\\ref{eq:#5}; yields Eq.~\\ref{eq:#6}.
  1. 9862900242
    \(y=- \frac{1}{2} g t^2 + v_0 t \sin(\theta) + y_0\)
  1. 4162188238
    \(t_f\)
  1. 8120663858
    \(y_f\)
  1. 8406170337
    \(y\)
  1. 2403773761
    \(t\)
  1. 5379546684
    \(y_f=- \frac{1}{2} g t_f^2 + v_0 t_f \sin(\theta) + y_0\)
list index out of range
6
  • ID: 111556; substitute LHS of expr 1 into expr 2
  • number of inputs: 2; feeds: 0; outputs: 1
  • Substitute LHS of Eq.~\\ref{eq:#1} into Eq.~\\ref{eq:#2}; yields Eq.~\\ref{eq:#3}.
  1. 8198310977
    \(0=- \frac{1}{2} g t_f^2 + v_0 t_f \sin(\theta) + y_0\)
  1. 1650441634
    \(y_0=0\)
  1. 1087417579
    \(0=- \frac{1}{2} g t_f^2 + v_0 t_f \sin(\theta)\)
LHS diff is pdg0001469 RHS diff is pdg0001469
18
  • ID: 111556; substitute LHS of expr 1 into expr 2
  • number of inputs: 2; feeds: 0; outputs: 1
  • Substitute LHS of Eq.~\\ref{eq:#1} into Eq.~\\ref{eq:#2}; yields Eq.~\\ref{eq:#3}.
  1. 2519058903
    \(\sin(2 \theta)=2 \sin(\theta) \cos(\theta)\)
  1. 2297105551
    \(d=v_0 \frac{2 v_0 \sin(\theta)}{g} \cos(\theta)\)
  1. 8922441655
    \(d=\frac{v_0^2}{g} \sin(2 \theta)\)
valid
3
  • ID: 111278; boundary condition
  • number of inputs: 1; feeds: 0; outputs: 1
  • Boundary condition: Eq.~\\ref{eq:#2} when Eq.~\\ref{eq#1}.
  1. 5373931751
    \(t=t_f\)
  1. 9112191201
    \(y_f=0\)
no validation is available for assumptions
23
  • ID: 111341; declare final expression
  • number of inputs: 1; feeds: 0; outputs: 0
  • Eq.~\\ref{eq:#1} is one of the final equations.
  1. 1541916015
    \(\theta=\frac{\pi}{4}\)
no validation is available for declarations
9
  • ID: 111182; multiply both sides by
  • number of inputs: 1; feeds: 1; outputs: 1
  • Multiply both sides of Eq.~\\ref{eq:#2} by $#1$; yields Eq.~\\ref{eq:#3}.
  1. 1191796961
    \(\frac{1}{2} g t_f=v_0 \sin(\theta)\)
  1. 2510804451
    \(2/g\)
  1. 4778077984
    \(t_f=\frac{2 v_0 \sin(\theta)}{g}\)
valid
15
  • ID: 111556; substitute LHS of expr 1 into expr 2
  • number of inputs: 2; feeds: 0; outputs: 1
  • Substitute LHS of Eq.~\\ref{eq:#1} into Eq.~\\ref{eq:#2}; yields Eq.~\\ref{eq:#3}.
  1. 7233558441
    \(d=v_0 t_f \cos(\theta)\)
  1. 4778077984
    \(t_f=\frac{2 v_0 \sin(\theta)}{g}\)
  1. 2297105551
    \(d=v_0 \frac{2 v_0 \sin(\theta)}{g} \cos(\theta)\)
LHS diff is -pdg0001943 + pdg0002467 RHS diff is 2*pdg0005153*(-pdg0005153*cos(pdg0001575) + 1)*sin(pdg0001575)/pdg0001649
1
  • ID: 111981; declare initial expression
  • number of inputs: 0; feeds: 0; outputs: 1
  • Eq.~\\ref{eq:#1} is an initial equation.
  1. 9862900242
    \(y=- \frac{1}{2} g t^2 + v_0 t \sin(\theta) + y_0\)
no validation is available for declarations
8
  • ID: 111530; add X to both sides
  • number of inputs: 1; feeds: 1; outputs: 1
  • Add $#1$ to both sides of Eq.~\\ref{eq:#2}; yields Eq.~\\ref{eq:#3}.
  1. 2086924031
    \(0=- \frac{1}{2} g t_f + v_0 \sin(\theta)\)
  1. 6974054946
    \(\frac{1}{2} g t_f\)
  1. 1191796961
    \(\frac{1}{2} g t_f=v_0 \sin(\theta)\)
valid
20
  • ID: 111556; substitute LHS of expr 1 into expr 2
  • number of inputs: 2; feeds: 0; outputs: 1
  • Substitute LHS of Eq.~\\ref{eq:#1} into Eq.~\\ref{eq:#2}; yields Eq.~\\ref{eq:#3}.
  1. 8922441655
    \(d=\frac{v_0^2}{g} \sin(2 \theta)\)
  1. 1541916015
    \(\theta=\frac{\pi}{4}\)
  1. 3607070319
    \(d=\frac{v_0^2}{g} \sin\left(2 \frac{\pi}{4}\right)\)
LHS diff is pdg0001575 - pdg0001943 RHS diff is pdg0003141/4 - pdg0005153**2*sin(pdg0003141/2)/pdg0001649
5
  • ID: 111104; declare assumption
  • number of inputs: 0; feeds: 0; outputs: 1
  • Eq.~\\ref{eq:#1} is an assumption.
  1. 1650441634
    \(y_0=0\)
no validation is available for declarations
17
  • ID: 111886; change variable X to Y
  • number of inputs: 1; feeds: 2; outputs: 1
  • Change variable $#1$ to $#2$ in Eq.~\\ref{eq:#3}; yields Eq.~\\ref{eq:#4}.
  1. 2405307372
    \(\sin(2 x)=2 \sin(x) \cos(x)\)
  1. 7214442790
    \(x\)
  1. 7587034465
    \(\theta\)
  1. 2519058903
    \(\sin(2 \theta)=2 \sin(\theta) \cos(\theta)\)
valid
19
  • ID: 111773; maximum of expression
  • number of inputs: 1; feeds: 1; outputs: 1
  • The maximum of Eq.~\\ref{eq:#2} with respect to $#1$ is Eq.~\\ref{eq:#3}
  1. 8922441655
    \(d=\frac{v_0^2}{g} \sin(2 \theta)\)
  1. 5667870149
    \(\theta\)
  1. 1541916015
    \(\theta=\frac{\pi}{4}\)
recognized infrule but not yet supported


Hold the mouse over a node to highlight that node and its neighbors. You can zoom in/out. You can pan the image. You can move nodes by clicking and dragging.

Actions: Edit Derivation

Generate Tex file or PDF file

   xor   

Delete Derivation and all associated steps

This does not remove expressions, symbols, and operations.

timing of Neo4j queries: